Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 589
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Nutr Cancer ; 76(6): 529-542, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567899

RESUMO

Astaxanthin (AST) is a natural marine carotenoid with a variety of biological activities. This study aimed to demonstrate the possible mechanisms by which AST improves skeletal muscle atrophy in cancer cachexia. In this study, the effects of different doses of AST (30 mg/kg b.w., 60 mg/kg b.w. and 120 mg/kg b.w.) on skeletal muscle functions were explored in mice with cancer cachexia. The results showed that AST (30, 60 and 120 mg/kg b.w.) could effectively protect cachexia mice from body weight and skeletal muscle loss. AST dose-dependently ameliorated the decrease in myofibres cross-sectional area and increased the expression of myosin heavy chain (MHC). AST treatment decreased both the serum and muscle level of IL-6 but not TNF-α in C26 tumor-bearing cachexia mice. Moreover, AST alleviated skeletal muscle atrophy by decreasing the expression of two muscle-specific E3 ligases MAFBx and MuRF-1. AST improved mitochondrial function by downregulating the levels of muscle Fis1, LC3B and Bax, upregulating the levels of muscle Mfn2 and Bcl-2. In conclusion, our study show that AST might be expected to be a nutritional supplement for cancer cachexia patients.


Assuntos
Caquexia , Músculo Esquelético , Atrofia Muscular , Xantofilas , Animais , Xantofilas/farmacologia , Caquexia/tratamento farmacológico , Caquexia/etiologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Camundongos , Masculino , Proteínas Musculares/metabolismo , Interleucina-6/metabolismo , Camundongos Endogâmicos BALB C , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Cadeias Pesadas de Miosina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Linhagem Celular Tumoral
2.
J Med Food ; 27(5): 385-395, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574296

RESUMO

This study aimed to investigate the effects and mechanism of Lactobacillus gasseri BNR17, a probiotic strain isolated from human breast milk, on dexamethasone-induced muscle loss in mice and cultured myotubes. BALB/c mice were intraperitoneally injected with dexamethasone, and orally administered L. gasseri BNR17 for 21 days. L. gasseri BNR17 treatment ameliorated dexamethasone-induced decline in muscle function, as evidenced by an increase in forelimb grip strength, treadmill running time, and rotarod retention time in both female and male mice. In addition, L. gasseri BNR17 treatment significantly increased the mass of the gastrocnemius and quadriceps muscles. Dual-energy X-ray absorptiometry showed a significant increase in lean body mass and a decrease in fat mass in both whole body and hind limb after treatment with L. gasseri BNR17. It was found that L. gasseri BNR17 treatment downregulated serum myostatin level and the protein degradation pathway composed of muscle-specific ubiquitin E3 ligases, MuRF1 and MAFbx, and their transcription factor FoxO3. In contrast, L. gasseri BNR17 treatment upregulated serum insulin-like growth factor-1 level and Akt-mTOR-p70S6K signaling pathway involved in protein synthesis in muscle. As a result, L. gasseri BNR17 treatment significantly increased the levels of major muscular proteins such as myosin heavy chain and myoblast determination protein 1. Consistent with in vivo results, L. gasseri BNR17 culture supernatant significantly ameliorated dexamethasone-induced C2C12 myotube atrophy in vitro. In conclusion, L. gasseri BNR17 ameliorates muscle loss by downregulating the protein degradation pathway and upregulating the protein synthesis pathway.


Assuntos
Dexametasona , Lactobacillus gasseri , Camundongos Endogâmicos BALB C , Fibras Musculares Esqueléticas , Proteínas Musculares , Músculo Esquelético , Atrofia Muscular , Probióticos , Ubiquitina-Proteína Ligases , Animais , Dexametasona/efeitos adversos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Camundongos , Feminino , Masculino , Proteínas Musculares/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/tratamento farmacológico , Lactobacillus gasseri/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Serina-Treonina Quinases TOR/metabolismo
3.
Stem Cell Res Ther ; 15(1): 102, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589967

RESUMO

BACKGROUND: Premature ovarian insufficiency (POI) is a major cause of infertility. In this study, we aimed to investigate the effects of the combination of bone marrow mesenchymal stem cells (BMSCs) and moxibustion (BMSCs-MOX) on POI and evaluate the underlying mechanisms. METHODS: A POI rat model was established by injecting different doses of cyclophosphamide (Cy). The modeling of POI and the effects of the treatments were assessed by evaluating estrous cycle, serum hormone levels, ovarian weight, ovarian index, and ovarian histopathological analysis. The effects of moxibustion on BMSCs migration were evaluated by tracking DiR-labeled BMSCs and analyzing the expression of chemokines stromal cell-derived factor 1 (Sdf1) and chemokine receptor type 4 (Cxcr4). Mitochondrial function and mitophagy were assessed by measuring the levels of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), ATP, and the mitophagy markers (Drp1, Pink1, and Parkin). Furthermore, the mitophagy inhibitor Mdivi-1 and the mitophagy activator CCCP were used to confirm the role of mitophagy in Cy-induced ovarian injury and the underlying mechanism of combination therapy. RESULTS: A suitable rat model of POI was established using Cy injection. Compared to moxibustion or BMSCs transplantation alone, BMSCs-MOX showed improved outcomes, such as reduced estrous cycle disorders, improved ovarian weight and index, normalized serum hormone levels, increased ovarian reserve, and reduced follicle atresia. Moxibustion enhanced Sdf1 and Cxcr4 expression, promoting BMSCs migration. BMSCs-MOX reduced ROS levels; upregulated MMP and ATP levels in ovarian granulosa cells (GCs); and downregulated Drp1, Pink1, and Parkin expression in ovarian tissues. Mdivi-1 significantly mitigated mitochondrial dysfunction in ovarian GCs and improved ovarian function. CCCP inhibited the ability of BMSCs-MOX treatment to regulate mitophagy and ameliorate Cy-induced ovarian injury. CONCLUSIONS: Moxibustion enhanced the migration and homing of BMSCs following transplantation and improves their ability to repair ovarian damage. The combination of BMSCs and moxibustion effectively reduced the excessive activation of mitophagy, which helped prevent mitochondrial damage, ultimately improving ovarian function. These findings provide a novel approach for the treatment of pathological ovarian aging and offer new insights into enhancing the efficacy of stem cell therapy for POI patients.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Moxibustão , Insuficiência Ovariana Primária , Humanos , Feminino , Ratos , Animais , Mitofagia , Espécies Reativas de Oxigênio/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/efeitos adversos , Carbonil Cianeto m-Clorofenil Hidrazona/metabolismo , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/terapia , Insuficiência Ovariana Primária/patologia , Ciclofosfamida/efeitos adversos , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo , Hormônios/efeitos adversos , Hormônios/metabolismo , Trifosfato de Adenosina/metabolismo
4.
Chembiochem ; 25(10): e202400184, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38573110

RESUMO

Genetic aberrations of the maternal UBE3A allele, which encodes the E3 ubiquitin ligase E6AP, are the cause of Angelman syndrome (AS), an imprinting disorder. In most cases, the maternal UBE3A allele is not expressed. Yet, approximately 10 percent of AS individuals harbor distinct point mutations in the maternal allele resulting in the expression of full-length E6AP variants that frequently display compromised ligase activity. In a high-throughput screen, we identified cyanocobalamin, a vitamin B12-derivative, and several alloxazine derivatives as activators of the AS-linked E6AP-F583S variant. Furthermore, we show by cross-linking coupled to mass spectrometry that cobalamins affect the structural dynamics of E6AP-F583S and apply limited proteolysis coupled to mass spectrometry to obtain information about the regions of E6AP that are involved in, or are affected by binding cobalamins and alloxazine derivatives. Our data suggest that dietary supplementation with vitamin B12 can be beneficial for AS individuals.


Assuntos
Síndrome de Angelman , Ubiquitina-Proteína Ligases , Vitamina B 12 , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Síndrome de Angelman/genética , Síndrome de Angelman/tratamento farmacológico , Síndrome de Angelman/metabolismo , Humanos , Regulação Alostérica/efeitos dos fármacos , Vitamina B 12/metabolismo , Vitamina B 12/química , Vitamina B 12/farmacologia
5.
Biosci Biotechnol Biochem ; 88(5): 529-537, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38509025

RESUMO

Four ethanol fractionated crude extracts (EFCEs [A-D]) purified from the leaves of Cinnamomum macrostemon Hayata were screened for antioxidative effects and mitochondrial function in HaCaT cells. The higher cell viability indicated that EFCE C was mildly toxic. Under the treatment of 50 ng/mL EFCE C, the hydrogen peroxide (H2O2)-induced cytosolic and mitochondrial reactive oxygen species levels were reduced as well as the H2O2-impaired cell viability, mitochondrial membrane potential (MMP), ATP production, and mitochondrial mass. The conversion of globular mitochondria to tubular mitochondria is coincident with EFCE C-restored mitochondrial function. The mitophagy activator rapamycin showed similar effects to EFCE C in recovering the H2O2-impaired cell viability, MMP, ATP production, mitochondrial mass, and also mitophagic proteins such as PINK1, Parkin, LC3 II, and biogenesis protein PGC-1α. We thereby propose the application of EFCE C in the prevention of oxidative stress in skin cells.


Assuntos
Sobrevivência Celular , Cinnamomum , Peróxido de Hidrogênio , Queratinócitos , Potencial da Membrana Mitocondrial , Mitocôndrias , Mitofagia , Estresse Oxidativo , Extratos Vegetais , Espécies Reativas de Oxigênio , Humanos , Mitofagia/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/citologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cinnamomum/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Folhas de Planta/química , Antioxidantes/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Sirolimo/farmacologia , Células HaCaT , Proteínas Quinases/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética
6.
Phytomedicine ; 128: 155300, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518639

RESUMO

BACKGROUND: This study was conducted to elucidate the critical molecular pathways underlying the protective effects of remifentanil against hepatic ischemia-reperfusion injury in rats. Our approach integrated network pharmacology analysis with high-throughput sequencing to achieve a comprehensive understanding of the mechanisms involved. STUDY DESIGN/METHODS: The study utilized GSE24430 gene expression data from GEO to investigate remifentanil's impact on Hepatic Ischemia-Reperfusion Injury in rats. Weighted Correlation Network Analysis (WGCNA) was employed to pinpoint crucial genes and identify modules of co-expressed genes. Differential analysis with the "Limma" package revealed genes differentially expressed in IRI vs. control groups. PubChem and PharmMapper provided target genes affected by remifentanil. Protein-protein interaction networks were constructed via GeneCards and STRING. Functional analysis pinpointed core genes involved in remifentanil's IRI alleviation. IRI rat models were established, and hepatic injury indicators, liver structure via H&E staining, autophagosome counts via electron microscopy, and gene/protein expression via RT-qPCR and Western blot were assessed. High-throughput sequencing analyzed molecular pathways affected by varying remifentanil doses in IRI rats. RESULTS: In the study, we discovered four primary co-expression modules associated with hepatic IRI, and the grey module exhibited the highest correlation with hepatic IRI.A total of sixty-eight genes that were differentially expressed were found to have a connection with hepatic IRI.Network pharmacology analysis found that remifentanil may alleviate hepatic IRI through Fmol.found that the Fmol/Parkin signaling pathway may alleviate hepatic IRI via Additionally, the database autophagy. The established hepatic IRI rat models further confirmed the above findings. CONCLUSION: Our study established that remifentanil triggers the Fmol/Parkin signaling cascade, amplifying the expression levels of Fmol and Parkin. This process culminates in the activation of autophagy within hepatic cells, ultimately alleviating hepatic ischemia-reperfusion injury (IRI).


Assuntos
Fígado , Farmacologia em Rede , Ratos Sprague-Dawley , Remifentanil , Traumatismo por Reperfusão , Transdução de Sinais , Ubiquitina-Proteína Ligases , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Remifentanil/farmacologia , Transdução de Sinais/efeitos dos fármacos , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Ratos , Ubiquitina-Proteína Ligases/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Mapas de Interação de Proteínas
7.
Zhen Ci Yan Jiu ; 49(3): 221-230, 2024 Mar 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38500318

RESUMO

OBJECTIVES: To observe the effects of electroacupuncture (EA) at "Fengfu"(GV16), "Taichong"(LR3), and "Zusanli"(ST36) on mitophagy mediated by silencing regulatory protein 3 (SIRT3)/ PTEN induced putative kinase 1 (PINK1)/PARK2 gene coding protein (Parkin) in the midbrain substantia nigra of Parkinson's disease (PD) mice, and to explore the potential mechanisms of EA in treating PD. METHODS: C57BL/6 mice were randomly divided into the control, model, EA, and sham EA groups, with 12 mice in each group. The PD mouse model was established by intraperitoneal injection of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). The EA group received EA stimulation at GV16, LR3 and ST36, while the sham EA group received shallow needling 1 mm away from the above acupoints without electrical stimulation. The motor ability of mice in each group was evaluated using an open field experiment. Immunohistochemistry was used to detect the expression of tyrosine hydroxylase (TH) and α-synuclein (α-syn) in the substantia nigra of mice. The ultrastructure of neurons in substantia nigra was observed by transmission electron microscope (TEM). Immunofluorescence was used to detect the expression of the autophagy marker autophagy-associated protein light chain 3 (LC3). The expression levels of TH, α-syn, SIRT3, PINK1, Parkin, P62, Beclin-1, LC3Ⅱ mRNA and protein were detected by PCR and Western blot. RESULTS: Compared with the control group, mice in the model group showed a decrease in the total exercise distance, time, movement speed and times of crossing central region (P<0.01);the positive expressions of TH and LC3 were decreased (P<0.01), while the positive expression of α-syn increased (P<0.01), accompanied by mitochondrial swelling, mitochondrial cristae fragmentation and decrease, and decreased lysosome count;the expression levels of TH, SIRT3, PINK1, Parkin, Beclin-1, and LC3Ⅱ mRNA and protein in the midbrain substantia nigra were decreased (P<0.01), while the expression levels of α-syn and P62 mRNA and protein were increased (P<0.01, P<0.05). Compared with the model group, the mice in EA group showed a significant increase in the total exercise distance, time, movement speed and times of crossing central region (P<0.01, P<0.05);the positive expressions of TH and LC3 were increased (P<0.01, P<0.05), while the positive expression of α-syn was decreased (P<0.01), accompanied by an increase in mitochondrial count, appearance of autophagic va-cuoles, and a decrease in swelling, the expression levels of TH, SIRT3, PINK1, Parkin, Beclin-1 and LC3Ⅱ mRNA and protein in the midbrain substantia nigra were increased (P<0.01, P<0.05), while the mRNA and protein expression levels of α-syn and P62 were decreased (P<0.01);the sham EA group showed an increase in the total exercise distance and time(P<0.05), with an increase in the positive expression of TH (P<0.05) and a decrease in the positive expression of α-syn (P<0.05);some mitochondria exhibited swelling, and no autophagic vacuoles were observed;the protein expression levels of TH, SIRT3, Parkin and LC3Ⅱ were increased (P<0.01, P<0.05), and the expression levels of P62 mRNA, α-syn mRNA and protein were decreased (P<0.01, P<0.05), and LC3Ⅱ mRNA expression was increased (P<0.05). In comparison to the sham EA group, the EA group showed an extension in the total exercise time (P<0.01), the positive expression and mRNA expression levels of α-syn were decreased (P<0.01, P<0.05), while the expression levels of TH, SIRT3, PINK1, Parkin mRNA and SIRT3 protein were increased (P<0.05). CONCLUSIONS: EA at GV16, LR3, and ST36 can exert neuroprotective function and improve the motor ability of PD mice by activating the SIRT3/PINK1/Parkin pathway to enhance the expression of TH and reduce α-syn aggregation in the substantia nigra of PD mice.


Assuntos
Eletroacupuntura , Doença de Parkinson , Sirtuína 3 , Camundongos , Animais , Doença de Parkinson/genética , Doença de Parkinson/terapia , Sirtuína 3/genética , Mitofagia/genética , Proteínas Quinases/genética , Proteína Beclina-1 , Camundongos Endogâmicos C57BL , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , RNA Mensageiro
8.
Acta Cir Bras ; 39: e391424, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511762

RESUMO

PURPOSE: XinJiaCongRongTuSiZiWan (XJCRTSZW) is a traditional Chinese medicine compound for invigorating the kidney, nourishing blood, and promoting blood circulation. This study aimed to explore the effect of XJCRTSZW on triptolide (TP)-induced oxidative stress injury. METHODS: Adult female Sprague-Dawley rats and human ovarian granulosa cell lines were treated with TP and XJCRTSZW. Hematoxylin and eosin staining, enzyme-linked immunosorbent assay, flow cytometry, CCK-8, JC-1 staining, transmission electron microscopy, reverse transcription-quantitative polymerase chain reaction, and Western blotting were performed in this study. RESULTS: XJCRTSZW treatment observably ameliorated the TP-induced pathological symptoms. Furthermore, XJCRTSZW treatment observably enhanced the TP-induced reduction of estradiol, anti-Mullerian hormone, progesterone, superoxide dismutase, ATP content, mitochondrial membrane potential, p62, and Hsp60 mRNA, and protein levels in vivo and in vitro (p < 0.05). However, TP-induced elevation of follicle stimulating hormone and luteinizing hormone concentrations, malondialdehyde levels, reactive oxygen species levels, apoptosis rate, mitophagy, and the mRNA and protein expressions of LC3-II/LC3-I, PTEN-induced kinase 1 (PINK1), and Parkin were decreased (p < 0.05). In addition, XJCRTSZW treatment markedly increased cell viability in vitro (p < 0.05). CONCLUSIONS: XJCRTSZW protects TP-induced rats from oxidative stress injury via the mitophagy-mediated PINK1/Parkin pathway.


Assuntos
Diterpenos , Mitocôndrias , Mitofagia , Fenantrenos , Adulto , Ratos , Feminino , Humanos , Animais , Ratos Sprague-Dawley , Estresse Oxidativo , Ubiquitina-Proteína Ligases , Transdução de Sinais , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Compostos de Epóxi
9.
Mar Drugs ; 22(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38535468

RESUMO

The extracts of Corydalis heterocarpa, a salt-tolerant plant, exhibit diverse physiological properties, including anti-inflammatory, anticancer, and antiadipogenic effects. However, the anti-aging effects of C. heterocarpa extract (CHE) on human skin cells have not yet been investigated. In the present study, we determined that CHE inhibited senescence-associated ß-galactosidase (SA-ß-gal)-stained senescent human dermal fibroblasts (HDFs). Furthermore, CHE markedly suppressed the expression of major regulatory proteins involved in senescence, including p53, p21, and caveolin-1. Interestingly, CHE promoted autophagic flux, as confirmed by the formation of microtubule-associated protein 1 light chain 3B (LC3B) puncta and lysosomal activity. Notably, using RNA sequencing (RNA-seq), we showed that CHE selectively regulated the gene expression of leucine-rich repeat and sterile alpha motif-containing 1 (LRSAM1), an important regulator of autophagy. The adenosine-monophosphate activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway, which is essential for autophagy regulation, was also modulated by CHE. LRSAM1 depletion not only inhibited LC3B expression but also decreased the autophagy flux induced by CHE. Moreover, the knockdown of LRSAM1 suppressed the reversal of CHE-induced senescence in old HDFs. Collectively, our study has revealed the rejuvenating effects and molecular mechanisms of CHE, suggesting that CHE may be a promising anti-aging agent.


Assuntos
Corydalis , Humanos , Autofagia , Pele , Envelhecimento , Extratos Vegetais , Ubiquitina-Proteína Ligases
10.
J Ethnopharmacol ; 328: 117863, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38325670

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The JinChan YiShen TongLuo (JCYSTL) formula, a traditional Chinese medicine (TCM), has been used clinically for decades to treat diabetic nephropathy (DN). TCM believes that the core pathogenesis of DN is "kidney deficiency and collateral obstruction," and JCYSTL has the effect of "tonifying kidney and clearing collateral," thus alleviating the damage to kidney structure and function caused by diabetes. From the perspective of modern medicine, mitochondrial damage is an important factor in DN pathogenesis. Our study suggests that the regulation of mitophagy and mitochondrial function by JCYSTL may be one of the internal mechanisms underlying its good clinical efficacy. AIM OF THE STUDY: This study aimed to investigate the mechanisms underlying the renoprotective effects of JCYSTL. MATERIALS AND METHODS: Unilateral nephrectomy combined with low-dose streptozotocin intraperitoneally injected in a DN rat model and high glucose (HG) plus hypoxia-induced HK-2 cells were used to explore the effects of JCYSTL on the HIF-1α/mitophagy pathway, mitochondrial function and apoptosis. RESULTS: JCYSTL treatment significantly decreased albuminuria, serum creatinine, blood urea nitrogen, and uric acid levels and increased creatinine clearance levels in DN rats. In vitro, medicated serum containing JCYSTL formula increased mitochondrial membrane potential (MMP); improved activities of mitochondrial respiratory chain complexes I, III, and IV; decreased the apoptotic cell percentage and apoptotic protein Bax expression; and increased anti-apoptotic protein Bcl-2 expression in HG/hypoxia-induced HK-2 cells. The treatment group exhibited increased accumulation of PINK1, Parkin, and LC3-II and reduced P62 levels in HG/hypoxia-induced HK-2 cells, whereas in PINK1 knockdown HK-2 cells, JCYSTL did not improve the HG/hypoxia-induced changes in Parkin, LC3-II, and P62. When mitophagy was impaired by PINK1 knockdown, the inhibitory effect of JCYSTL on Bax and its promoting effect on MMP and Bcl-2 disappeared. The JCYSTL-treated group displayed significantly higher HIF-1α expression than the model group in vivo, which was comparable to the effects of FG-4592 in DN rats. PINK1 knockdown did not affect HIF-1α accumulation in JCYSTL-treated HK-2 cells exposed to HG/hypoxia. Both JCYSTL and FG-4592 ameliorated mitochondrial morphological abnormalities and reduced the mitochondrial respiratory chain complex activity in the renal tubules of DN rats. Mitochondrial apoptosis signals in DN rats, such as increased Bax and Caspase-3 expression and apoptosis ratio, were weakened by JCYSTL or FG-4592 administration. CONCLUSION: This study demonstrates that the JCYSTL formula activates PINK1/Parkin-mediated mitophagy by stabilizing HIF-1α to protect renal tubules from mitochondrial dysfunction and apoptosis in diabetic conditions, presenting a promising therapy for the treatment of DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Medicamentos de Ervas Chinesas , Doenças Mitocondriais , Ratos , Animais , Nefropatias Diabéticas/patologia , Proteína X Associada a bcl-2 , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Ubiquitina-Proteína Ligases/metabolismo , Hipóxia , Proteínas Quinases/metabolismo
11.
Phytomedicine ; 126: 155434, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367424

RESUMO

OBJECTIVE: This study investigated whether perinatal exposure to nonylphenol (NP) induces mitochondrial autophagy (i.e., mitophagy) damage in neonatal rat cardiomyocytes (NRCMs) and whether the PINK1/Parkin signaling pathway is involved in NP-induced primary cardiomyocyte injury. METHODS AND RESULTS: In vivo: Perinatal NP exposure increased apoptosis and mitochondrial damage in NRCMs. Mitochondrial swelling and autophagosome-like structures with multiple concentric membranes were observed in the 100 mg/kg NP group, with an increase in the number of autophagosomes. Disorganized fiber arrangement and elevated serum myocardial enzyme levels were observed with increasing NP dosage. Additionally, NP exposure led to increased MDA levels and decreased SOD activity and ATP levels in myocardial tissue. The mRNA expression levels of autophagy-related genes, including Beclin-1, p62, and LC3B, as well as the expression of mitochondrial autophagy-related proteins (PINK1, p-Parkin, Parkin, Beclin-1, p62, LC3-I, LC3-II, and LC3-II/I) and apoptosis-related proteins (Bax and caspase-3), increased, whereas the expression levels of the mitochondrial membrane protein TOMM20 and the anti-apoptotic protein Bcl-2 decreased. In vitro: NP increased ROS levels, LDH release, and decreased ATP levels in NRCMs. CsA treatment significantly inhibited the expression of autophagy-related proteins (Beclin-1, LC3-II/I, and p62) and apoptosis-related proteins (caspase-3 and Bax), increased the expression levels of TOMM20 and Bcl-2 proteins, increased cellular ATP levels, and inhibited LDH release. The inhibition of the PINK1/Parkin signaling pathway suppressed the expression of mitochondrial autophagy-related proteins (PINK1, p-Parkin, Parkin, Beclin-1, LC3-II/I, and p62) and apoptosis-related proteins (caspase-3 and Bax), increased TOMM20 and Bcl-2 protein expression, increased ATP levels, and decreased LDH levels in NRCMs. CONCLUSIONS: This study is novel in reporting that perinatal NP exposure induced myocardial injury in male neonatal rats, thereby inducing mitophagy. The PINK1/Parkin signaling pathway was involved in this injury by regulating mitophagy.


Assuntos
Proteínas Reguladoras de Apoptose , Autofagia , Fenóis , Ratos , Animais , Masculino , Caspase 3/metabolismo , Proteína Beclina-1/metabolismo , Proteína X Associada a bcl-2 , Autofagia/fisiologia , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo , Trifosfato de Adenosina
12.
Curr Med Sci ; 44(1): 93-101, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38393524

RESUMO

OBJECTIVE: Keshan disease (KD) is a myocardial mitochondrial disease closely related to insufficient selenium (Se) and protein intake. PTEN induced putative kinase 1 (PINK1)/Parkin mediated mitochondrial autophagy regulates various physiological and pathological processes in the body. This study aimed to elucidate the relationship between PINK1/Parkin-regulated mitochondrial autophagy and KD-related myocardial injury. METHODS: A low Se and low protein animal model was established. One hundred Wistar rats were randomly divided into 5 groups (control group, low Se group, low protein group, low Se + low protein group, and corn from KD area group). The JC-1 method was used to detect the mitochondrial membrane potential (MMP). ELISA was used to detect serum creatine kinase MB (CK-MB), cardiac troponin I (cTnI), and mitochondrial-glutamicoxalacetic transaminase (M-GOT) levels. RT-PCR and Western blot analysis were used to detect the expression of PINK1, Parkin, sequestome 1 (P62), and microtubule-associated proteins1A/1B light chain 3B (MAP1LC3B). RESULTS: The MMP was significantly decreased and the activity of CK-MB, cTnI, and M-GOT significantly increased in each experimental group (low Se group, low protein group, low Se + low protein group and corn from KD area group) compared with the control group (P<0.05 for all). The mRNA and protein expression levels of PINK1, Parkin and MAP1LC3B were profoundly increased, and those of P62 markedly decreased in the experimental groups compared with the control group (P<0.05 for all). CONCLUSION: Low Se and low protein levels exacerbate myocardial damage in KD by affecting the PINK1/Parkin-mediated mitochondrial autophagy pathway.


Assuntos
Cardiomiopatias , Infecções por Enterovirus , Proteínas Quinases , Selênio , Ubiquitina-Proteína Ligases , Animais , Ratos , Autofagia/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ratos Wistar , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
Mol Biol Rep ; 51(1): 266, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302764

RESUMO

BACKGROUND: Rhein, which has antioxidant and anti-inflammatory response properties, is a beneficial treatment for different pathologies. However, the mechanism by which rhein protects against myocardial ischemic injury is poorly understood. METHODS AND RESULTS: To establish an acute myocardial infarction (AMI) rat model, we performed left anterior descending (LAD) ligation. Sprague‒Dawley rats were randomly divided into four groups: sham, AMI, AMI + rhein (AMI + R), and AMI + mitochondrial fission inhibitor (AMI + M). The extent of myocardial injury was evaluated by TTC staining, serum myocardial injury markers, and HE and Masson staining. Cardiac mitochondria ultrastructure was visualized by transmission electron microscopy. TUNEL assay and flow cytometry analysis were used to estimate cell apoptosis. Protein expression levels were measured by Western blotting. In vitro, the efficacy of rhein was assessed in H9c2 cells under hypoxic condition. Our results revealed that rats with AMI exhibited increased infarct size and indicators of myocardial damage, along with activation of Drp1-dependent mitochondrial fission, decreased mitophagy and increased apoptosis rates. However, pretreatment with rhein significantly reversed these effects and demonstrated similar efficacy to Mdivi-1. Furthermore, rhein pretreatment protected against myocardial ischemic injury by inhibiting mitochondrial fission, as evidenced by decreased Drp1 expression. It also enhanced mitophagy, as indicated by increased expression of Beclin1, Pink1 and Parkin, an increased LC3-II/LC3-I ratio and increased formation of autolysosomes. Additionally, rhein pretreatment mitigated apoptosis in AMI. These results were also confirmed in vitro in H9c2 cells. CONCLUSION: Our results demonstrate that rhein pretreatment exerts cardioprotective effects against myocardial ischemic injury via the Drp1/Pink1/Parkin pathway.


Assuntos
Antraquinonas , Dinâmica Mitocondrial , Proteínas Quinases , Ratos , Animais , Ratos Sprague-Dawley , Proteínas Quinases/metabolismo , Autofagia , Mitocôndrias/metabolismo , Apoptose , Ubiquitina-Proteína Ligases/metabolismo
14.
J Biol Chem ; 300(3): 105759, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367666

RESUMO

Genome-wide association studies have reported a correlation between a SNP of the RING finger E3 ubiquitin protein ligase rififylin (RFFL) and QT interval variability in humans (Newton-Cheh et al., 2009). Previously, we have shown that RFFL downregulates expression and function of the human-like ether-a-go-go-related gene potassium channel and corresponding rapidly activating delayed rectifier potassium current (IKr) in adult rabbit ventricular cardiomyocytes. Here, we report that RFFL also affects the transient outward current (Ito), but in a peculiar way. RFFL overexpression in adult rabbit ventricular cardiomyocytes significantly decreases the contribution of its fast component (Ito,f) from 35% to 21% and increases the contribution of its slow component (Ito,s) from 65% to 79%. Since Ito,f in rabbits is mainly conducted by Kv4.3, we investigated the effect of RFFL on Kv4.3 expressed in HEK293A cells. We found that RFFL overexpression reduced Kv4.3 expression and corresponding Ito,f in a RING domain-dependent manner in the presence or absence of its accessory subunit Kv channel-interacting protein 2. On the other hand, RFFL overexpression in Kv1.4-expressing HEK cells leads to an increase in both Kv1.4 expression level and Ito,s, similarly in a RING domain-dependent manner. Our physiologically detailed rabbit ventricular myocyte computational model shows that these yin and yang effects of RFFL overexpression on Ito,f, and Ito,s affect phase 1 of the action potential waveform and slightly decrease its duration in addition to suppressing IKr. Thus, RFFL modifies cardiac repolarization reserve via ubiquitination of multiple proteins that differently affect various potassium channels and cardiac action potential duration.


Assuntos
Miócitos Cardíacos , Canais de Potássio Shal , Ubiquitina-Proteína Ligases , Animais , Humanos , Coelhos , Potenciais de Ação/fisiologia , Estudo de Associação Genômica Ampla , Miócitos Cardíacos/metabolismo , Potássio/metabolismo , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Células HEK293
15.
J Ethnopharmacol ; 323: 117695, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38163556

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chaihu Shugan Powder (CHSGP) has significant clinical efficacy in the treatment of functional dyspepsia (FD), but the specific mechanism requires further study. AIM OF STUDY: The aim of this study was to investigate the therapeutic effect of CHSGP on FD rats and the underlying mechanism of the effect on interstitial cells of cajal (ICC) mitophagy. MATERIALS AND METHODS: The tail-clamping stimulation method was utilized to establish an FD rat model in vivo. Gastric emptying rate and small intestinal propulsion rate test, H&E staining, and Immunohistochemistry were conducted to evaluate the therapeutic effects of CHSGP on FD rats. In vitro, the regulatory effect of CHSGP on CCCP-mediated ICC mitophagy was further investigated by CCK8, Transmission electron microscope, immunofluorescence co-staining, Quantitative polymerase chain reaction and Western blot to reveal the potential mechanisms of CHSGP inhibited ICC mitophagy. RESULTS: Animal experiments provided evidence that CHSGP promoted gastric motility, increased ICC numbers, reduced Parkin expression, and elevated USP30 expression in FD rats. In vitro, further mechanism research demonstrated that CHSGP decreased LC3Ⅱ/LC3Ⅰ、PINK1、Parkin、PHB2 protein expression and increased USP30 protein expression. Furthermore, CHSGP increased Mfn2 protein expression by suppressing activation of the PINK1/Parkin pathway when USP30 is knocked down, consequently reducing CCCP-induced ICC mitophagy. CONCLUSIONS: These results suggest that CHSGP may treat FD against CCCP-induced ICC mitophagy by the up-regulation of via PINK1/Parkin pathway.


Assuntos
Dispepsia , Células Intersticiais de Cajal , Ratos , Animais , Mitofagia , Dispepsia/tratamento farmacológico , Dispepsia/metabolismo , Células Intersticiais de Cajal/metabolismo , Pós/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo
16.
Phytomedicine ; 124: 155323, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194842

RESUMO

BACKGROUND: Currently, there are no specific drugs or targets available for the treatment of tendinopathy. However, inflammation has recently been found to play a pivotal role in tendinopathy progression, thereby identifying it as a potential therapeutic target. Carpaine (CA) exhibits potential anti-inflammatory pharmacological properties and may offer a therapeutic option for tendinopathy. PURPOSE: This study aimed to investigate the effectiveness of CA in addressing tendinopathy and uncovering its underlying mechanisms. METHODS: Herein, the efficacy of CA by local administration in vivo in comparison to the first-line drug indomethacin was evaluated in a mouse collagenase-induced tendinopathy (CIT) model. Furthermore, IL-1ß induced a simulated pathological inflammatory microenvironment in tenocytes to investigate its underlying mechanisms in vitro. Further confirmation experiments were performed by overexpressing or knocking down the selective targets of CA in vivo. RESULTS: The findings demonstrated that CA was dose-dependent in treating tendinopathy and that the high-dose group outperformed the first-line drug indomethacin. Mechanistically, CA selectively bound to and enhanced the activity of the E3 ubiquitin ligase LRSAM1 in tendinopathy. This effect mediated the ubiquitination of p65 at lysine 93, subsequently promoting its proteasomal degradation. As a result, the NF-κB pathway was inactivated, leading to a reduction in inflammation of tendinopathy. Consequently, CA effectively mitigated the progression of tendinopathy. Moreover, the LRSAM1 overexpression demonstrated effectiveness in mitigating the tendinopathy progression and its knockdown abolished the therapeutic effects of CA. CONCLUSION: CA attenuates the progression of tendinopathy by promoting the ubiquitin-proteasomal degradation of p65 via increasing the enzyme activity of LRSAM1. The exploration of LRSAM1 has also unveiled a new potential target for treating tendinopathy based on the ubiquitin-proteasomal pathway.


Assuntos
Alcaloides , Tendinopatia , Ubiquitina-Proteína Ligases , Animais , Camundongos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Inflamação/metabolismo , Indometacina , Tendinopatia/tratamento farmacológico
17.
BMC Genomics ; 25(1): 10, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166714

RESUMO

BACKGROUND: Plant U-box (PUB) E3 ubiquitin ligases have vital effects on various biological processes. Therefore, a comprehensive and systematic identification of the members of the U-box gene family in potato will help to understand the evolution and function of U-box E3 ubiquitin ligases in plants. RESULTS: This work identified altogether 74 PUBs in the potato (StPUBs) and examined their gene structures, chromosomal distributions, and conserved motifs. There were seventy-four StPUB genes on ten chromosomes with diverse densities. As revealed by phylogenetic analysis on PUBs within potato, Arabidopsis, tomato (Solanum lycopersicum), cabbage (Brassica oleracea), rice (Oryza sativa), and corn (Zea mays), were clustered into eight subclasses (C1-C8). According to synteny analysis, there were 40 orthologous StPUB genes to Arabidopsis, 58 to tomato, 28 to cabbage, 7 to rice, and 8 to corn. In addition, RNA-seq data downloaded from PGSC were utilized to reveal StPUBs' abiotic stress responses and tissue-specific expression in the doubled-monoploid potato (DM). Inaddition, we performed RNA-seq on the 'Atlantic' (drought-sensitive cultivar, DS) and the 'Qingshu NO.9' (drought-tolerant cultivar, DT) in early flowering, full-blooming, along with flower-falling stages to detect genes that might be involved in response to drought stress. Finally, quantitative real-time PCR (qPCR) was carried out to analyze three candidate genes for their expression levels within 100 mM NaCl- and 10% PEG 6000 (w/v)-treated potato plantlets for a 24-h period. Furthermore, we analyzed the drought tolerance of StPUB25 transgenic plants and found that overexpression of StPUB25 significantly increased peroxidase (POD) activity, reduced ROS (reactive oxygen species) and MDA (malondialdehyde) accumulation compared with wild-type (WT) plants, and enhancing drought tolerance of the transgenic plants. CONCLUSION: In this study, three candidate genes related to drought tolerance in potato were excavated, and the function of StPUB25 under drought stress was verified. These results should provide valuable information to understand the potato StPUB gene family and investigate the molecular mechanisms of StPUBs regulating potato drought tolerance.


Assuntos
Arabidopsis , Solanum tuberosum , Ubiquitina-Proteína Ligases/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Resistência à Seca , Filogenia , Secas , Ubiquitinas/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
18.
J Hazard Mater ; 465: 133411, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181596

RESUMO

Excessive consumption of fluoride can cause skeletal fluorosis. Mitophagy has been identified as a novel target for bone disorders. Meanwhile, calcium supplementation has shown great potential for mitigating fluoride-related bone damage. Hence, this study aimed to elucidate the association between mitophagy and skeletal fluorosis and the precise mechanisms through which calcium alleviates these injuries. A 100 mg/L sodium fluoride (NaF) exposure model in Parkin knockout (Parkin-/-) mice and a 100 mg/L NaF exposure mouse model with 1% calcium carbonate (CaCO3) intervention were established in the current study. Fluoride exposure caused the impairment of mitochondria and activation of PTEN-induced putative kinase1 (PINK1)/E3 ubiquitin ligase Park2 (Parkin)-mediated mitophagy and mitochondrial apoptosis in the bones, which were restored after blocking Parkin. Additionally, the intervention model showed fluoride-exposed mice exhibited abnormal bone trabecula and mechanical properties. Still, these bone injuries could be effectively attenuated by adding 1% calcium to their diet, which reversed fluoride-activated mitophagy and apoptosis. To summarize, fluoride can activate bone mitophagy through the PINK1/Parkin pathway and mitochondrial apoptosis. Parkin-/- and 1% calcium provide protection against fluoride-induced bone damage. Notably, this study provides theoretical bases for the prevention and therapy of animal and human health and safety caused by environmental fluoride contamination.


Assuntos
Fluoretos , Mitofagia , Humanos , Camundongos , Animais , Fluoretos/farmacologia , Cálcio/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Mitocôndrias , Ubiquitina-Proteína Ligases , Apoptose , Suplementos Nutricionais
19.
Mod Pathol ; 37(4): 100438, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278485

RESUMO

We recently described novel dermal tumors with melanocytic differentiation and morphologic and biological similarities to cutaneous clear cell sarcoma, including CRTC1::TRIM11 cutaneous tumor, and clear cell tumors with melanocytic differentiation and either ACTIN::MITF or MITF::CREM. Here, we describe a series of 3 patients presenting with tumors reminiscent of CRTC1::TRIM11 cutaneous tumor, found to demonstrate a novel MED15::ATF1 fusion. All 3 patients were children (5-16 years old). Primary excision of case 1 showed a circumscribed wedge-shaped silhouette with peripheral intercalation into collagen fibers and scattered lymphoid aggregates. All 3 tumors abutted the epidermis; one showed a junctional component. Tumors were highly cellular and comprised of monomorphic, oval-to-round epithelioid cells arranged in vague nests and short fascicles in variably fibrotic stroma. Mitotic rate was high (hotspot 6-12/mm2), without atypical mitoses. Necrosis was focally present in case 3. All cases showed strong, diffuse nuclear staining for SOX10 and MITF (2/2) but showed variable expression for S100 protein (1/3) and other melanocytic markers-Melan-A (focal in 2/3), HMB45 (focal in 1/3), and Pan-Melanoma (patchy in 1/1). Whole-exome RNA sequencing demonstrated a MED15::ATF1 fusion without any other notable alterations. Cases 1 and 2 were completely excised without recurrence (12 months). Case 3 developed a grossly apparent regional lymph node spread shortly after primary biopsy. The patient was treated with wide excision, radiation, cervical lymph node dissection (4/46 with >75% lymph node replacement), and neoadjuvant and adjuvant nivolumab (alive without disease at cycle 11). This series is presented to aid in future diagnosis of this novel dermal tumor with melanocytic differentiation and emphasize the potential for aggressive biologic behavior, which should be considered in patient management planning.


Assuntos
Melanoma , Sarcoma de Células Claras , Neoplasias Cutâneas , Adolescente , Criança , Pré-Escolar , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Complexo Mediador , Melanoma/diagnóstico , Sarcoma de Células Claras/diagnóstico , Sarcoma de Células Claras/genética , Sarcoma de Células Claras/patologia , Neoplasias Cutâneas/patologia , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética
20.
J Ethnopharmacol ; 325: 117766, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38266949

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: A classic stroke formula is Buyang Huanwu Decoction (BYHWD), Glycosides are the pharmacological components found in BYHWD, which are utilized for the prevention and management of cerebral ischemia-reperfusion (CIR), as demonstrated in a previous study. Its neuroprotective properties are closely related to its ability to modulate inflammation, but its mechanism is as yet unclear. AIM OF THE STUDY: A research was undertaken to investigate the impact of glycosides on the inflammation of CIR through the PTEN-induced putative kinase-1 (PINK1)/Parkin mitophagy pathway. MATERIALS AND METHODS: Analyzing glycosides containing serum components was performed with ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). Glycosides were applied to rat of Middle cerebral artery occlusion/reperfusion (MCAO/R) model and primary neural cell of Oxygen glucose deprivation/reperfusion (OGD/R) model. The neuroprotective effect and the regulation of mitophagy of glycosides were evaluated through neural damage and PINK1/Parkin mitophagy activation. Moreover, the assessment of the relationship between glycosides regulation of mitophagy and its anti-inflammatory effects subsequent to mitophagy blockade was conducted by examining neural damage, PINK1/Parkin mitophagy activation, and levels of pyroptosis. RESULTS: (1) It was observed that the administration of glycosides resulted in a decrease in neurological function scores, a reduction in cerebral infarction volume, an increase in mitochondrial autophagosome, and the maintenance of a high expression status of light chain 3 (LC3) II/LC3Ⅰ protein. Additionally, there was a significant inhibition of p62 protein expression and an enhancement of PINK1 and Parkin protein expression. Furthermore, it was found that the effect of glycosides at a dosage of 0.128 g · kg-1 was significantly superior to that of glycosides at a dosage of 0.064 g · kg-1. Notably, the neuroprotective effect and inhibition of pyroptosis protein of glycosides at a dosage of 0.128 g · kg-1 were attenuated when mitochondrial autophagy was blocked. (2) Glycosides repaired cellular morphological damage, enhanced cell survival, and reduced Lactate dehydrogenase (LDH) leakage, with glycosides (2.36 µg·mL-1 and 4.72 µg·mL-1) neuronal protection being the strongest. Glycosides (4.72 µg·mL-1) maintained LC3II/LC3Ⅰ protein high expression state, inhibited p62 protein expression, and promoted PINK1 and Parkin protein expression, which was stronger than glycosides (2.36 µg·mL-1). The blockade of mitophagy resulted in a reduction of neuroprotection and inhibition of pyroptosis protein exerted by glycosides. CONCLUSION: Glycosides demonstrate the ability to hinder inflammation through the activation of the PINK1/Parkin mitophagy pathway, thereby leading to subsequent neuroprotective effects on CIR.


Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , Fármacos Neuroprotetores , Ratos , Animais , Mitofagia , Glicosídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley , Proteínas Quinases/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Reperfusão , Inflamação/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA