Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 309: 116366, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-36914036

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sauropus androgynus is a medicinal shrub used for the treatment of fever in ethnomedical traditions in various Southeast Asian countries. AIM OF THE STUDY: This study was aimed to identify antiviral principles from S. androgynus against Chikungunya virus (CHIKV), a major mosquito-borne pathogen that re-emerged in the last decade, and to unravel their mechanism of action. MATERIALS AND METHODS: Hydroalcoholic extract of S. androgynus leaves was screened for anti-CHIKV activity using cytopathic effect (CPE) reduction assay. The extract was subjected to activity guided isolation and the resultant pure molecule was characterized by GC-MS, Co-GC and Co-HPTLC. The isolated molecule was further evaluated for its effect by plaque reduction assay, Western blot and immunofluorescence assays. In silico docking with CHIKV envelope proteins and molecular dynamics simulation (MD) analyses were used to elucidate its possible mechanism of action. RESULTS: S. androgynus hydroalcoholic extract showed promising anti-CHIKV activity and its active component, obtained by activity guided isolation, was identified as ethyl palmitate (EP), a fatty acid ester. At 1 µg/mL, EP led to 100% inhibition of CPE and a significant 3 log10 reduction in CHIKV replication in Vero cells at 48 h post-infection. EP was highly potent with an EC50 of 0.0019 µg/mL (0.0068 µM) and a very high selectivity index. EP treatment significantly reduced viral protein expression, and time of addition studies revealed that it acts at the stage of viral entry. A strong binding to the viral envelope protein E1 homotrimer during entry, thus preventing viral fusion, was identified as a possible mechanism by which EP imparts its antiviral effect. CONCLUSIONS: S. androgynus contains EP as a potent antiviral principle against CHIKV. This justifies the use of the plant against febrile infections, possibly caused by viruses, in various ethnomedical systems. Our results also prompt more studies on fatty acids and their derivatives against viral diseases.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Plantas Medicinais , Animais , Chlorocebus aethiops , Vírus Chikungunya/fisiologia , Células Vero , Linhagem Celular , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/metabolismo , Replicação Viral , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Medicina Tradicional
2.
Virology ; 548: 250-260, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32791353

RESUMO

Chikungunya has re-emerged as an epidemic with global distribution and high morbidity, necessitating the need for effective therapeutics. We utilized already approved drugs with a good safety profile used in other diseases for their new property of anti-chikungunya activity. It provides a base for a fast and efficient approach to bring a novel therapy from bench to bedside by the process of drug-repositioning. We utilized an in-silico drug screening with FDA approved molecule library to identify inhibitors of the chikungunya nsP2 protease, a multifunctional and essential non-structural protein required for virus replication. Telmisartan, an anti-hypertension drug, and the antibiotic novobiocin emerged among top hits on the screen. Further, SPR experiments revealed strong in-vitro binding of telmisartan and novobiocin to nsP2 protein. Additionally, small angle x-ray scattering suggested binding of molecules to nsP2 and post-binding compaction and retention of monomeric state in the protein-inhibitor complex. Protease activity measurement revealed that both compounds inhibited nsP2 protease activity with IC50 values in the low micromolar range. More importantly, plaque formation assays could show the effectiveness of these drugs in suppressing virus propagation in host cells. We propose novobiocin and telmisartan as potential inhibitors of chikungunya replication. Further research is required to establish the molecules as antivirals of clinical relevance against chikungunya.


Assuntos
Antivirais/farmacologia , Febre de Chikungunya/virologia , Vírus Chikungunya/efeitos dos fármacos , Novobiocina/farmacologia , Telmisartan/farmacologia , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/genética , Vírus Chikungunya/fisiologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
3.
Sci Rep ; 10(1): 8263, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427940

RESUMO

The lack of vaccines and antiviral treatment, along with the increasing number of cases of Zika virus (ZIKV) and Chikungunya virus (CHIKV) infections, emphasize the need for searching for new therapeutic strategies. In this context, the marine brown seaweed Canistrocarpus cervicornis has been proved to hold great antiviral potential. Hence, the aim of this work was to evaluate the anti-ZIKV and anti-CHIKV activity of a marine dolastane isolated from brown seaweed C. cervicornis and its crude extract. Vero cells were used in antiviral assays, submitted to ZIKV and CHIKV, and treated with different concentrations of C. cervicornis extract or dolastane. The crude extract of C. cervicornis showed inhibitory activities for both ZIKV and CHIKV, with EC50 values of 3.3 µg/mL and 3.1 µg/mL, respectively. However, the isolated dolastane showed a more significant and promising inhibitory effect (EC50 = 0.95 µM for ZIKV and 1.3 µM for CHIKV) when compared to both the crude extract and ribavirin, which was used as control. Also, the dolastane showed a very potent virucidal activity against CHIKV and was able to inhibit around 90% of the virus infectivity at 10 µM. For the ZIKV, the effects were somewhat lower, although interesting, at approximately 64% in this same concentration. Further, we observed that both the extract and the dolastane were able to inhibit the replication of ZIKV and CHIKV at different times of addition post-infection, remaining efficient even if added after 8 hours post-infection, but declining soon after. A synergistic effect using sub-doses of the extract and isolates was associated with ribavirin, inhibiting above 80% replication even at the lowest concentrations. Therefore, this work has unveiled the anti-ZIKV and CHIKV potential of C. cervicornis crude extract and an isolated dolastane, which, in turn, can be used as a preventive or therapeutic strategy in the future.


Assuntos
Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Phaeophyceae/química , Extratos Vegetais/farmacologia , Alga Marinha/química , Replicação Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Animais , Antivirais/química , Febre de Chikungunya/virologia , Vírus Chikungunya/fisiologia , Chlorocebus aethiops , Humanos , Extratos Vegetais/química , Células Vero , Zika virus/fisiologia , Infecção por Zika virus/virologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-31964798

RESUMO

Alphaviruses are arthropod-borne, positive-stranded RNA viruses capable of causing severe disease with high morbidity. Chikungunya virus (CHIKV) is an alphavirus that causes a febrile illness which can progress into chronic arthralgia. The current lack of vaccines and specific treatment for CHIKV infection underscores the need to develop new therapeutic interventions. To discover new antiviral agents, we performed a compound screen in cell culture-based infection models and identified two carbocyclic adenosine analogues, 6'-ß-fluoro-homoaristeromycin (FHA) and 6'-fluoro-homoneplanocin A (FHNA), that displayed potent activity against CHIKV and Semliki Forest virus (SFV) with 50% effective concentrations in the nanomolar range at nontoxic concentrations. The compounds, designed as inhibitors of the host enzyme S-adenosylhomocysteine (SAH) hydrolase, impeded postentry steps in CHIKV and SFV replication. Selection of FHNA-resistant mutants and reverse genetics studies demonstrated that the combination of mutations G230R and K299E in CHIKV nonstructural protein 1 (nsP1) conferred resistance to the compounds. Enzymatic assays with purified wild-type (wt) SFV nsP1 suggested that an oxidized (3'-keto) form, rather than FHNA itself, directly inhibited the MTase activity, while a mutant protein with the K231R and K299E substitutions was insensitive to the compound. Both wt nsP1 and the resistant mutant were equally sensitive to the inhibitory effect of SAH. Our combined data suggest that FHA and FHNA inhibit CHIKV and SFV replication by directly targeting the MTase activity of nsP1, rather than through an indirect effect on host SAH hydrolase. The high potency and selectivity of these novel alphavirus mRNA capping inhibitors warrant further preclinical investigation of these compounds.


Assuntos
Adenosina/análogos & derivados , Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Vírus Chikungunya/fisiologia , Adenosina/farmacologia , Animais , Vírus Chikungunya/patogenicidade , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Guanosina Monofosfato/metabolismo , Mutação , Radioisótopos de Fósforo , Vírus da Floresta de Semliki/efeitos dos fármacos , Células Vero , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
5.
Molecules ; 24(12)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242603

RESUMO

Macrocyclic diterpenoids produced by plants of the Euphorbiaceae family are of considerable interest due to their high structural diversity; and their therapeutically relevant biological properties. Over the last decade many studies have reported the ability of macrocyclic diterpenoids to inhibit in cellulo the cytopathic effect induced by the chikungunya virus. This review; which covers the years 2011 to 2019; lists all macrocyclic diterpenoids that have been evaluated for their ability to inhibit viral replication. The structure-activity relationships and the probable involvement of protein kinase C in their mechanism of action are also detailed.


Assuntos
Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Vírus Chikungunya/fisiologia , Diterpenos/química , Diterpenos/farmacologia , Euphorbiaceae/química , Extratos Vegetais/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/química , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/virologia , Humanos , Estrutura Molecular , Extratos Vegetais/química , Relação Estrutura-Atividade
6.
Virology ; 533: 45-49, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31082733

RESUMO

Chikungunya, a mosquito-borne viral disease is now a global public health problem. In tropical countries such as India, periodic chikungunya outbreaks can occur due the high prevalence of the mosquito vector, circulation of virus and the high population density. To curtail the virus in outbreak situation, a ready to use drug for chikungunya is necessary. Using the literature mentioned plant extracts, we used four assays to screen and identify indigenous plants with CHIKV inhibitory activity. Our results showed that the aqueous extract of five plant extracts exhibited anti-CHIKV activity by inhibiting viral attachment, four plant extracts exhibited replication inhibition through inhibition of helicase activity, two plants showed inhibition of protease activity. Two plant extracts showed both viral attachment inhibition and replication inhibition and also exhibited dose dependent response in virus replication inhibition assay. These findings warrant further investigation to standardize these plant extracts as antiviral formulation for chikungunya infection.


Assuntos
Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Antivirais/química , Febre de Chikungunya/virologia , Vírus Chikungunya/fisiologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Extratos Vegetais/química , Ligação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
7.
Nat Commun ; 9(1): 3905, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254309

RESUMO

Co-infection with Plasmodium and chikungunya virus (CHIKV) has been reported in humans, but the impact of co-infection on pathogenesis remains unclear. Here, we show that prior exposure to Plasmodium suppresses CHIKV-associated pathologies in mice. Mechanistically, Plasmodium infection induces IFNγ, which reduces viraemia of a subsequent CHIKV infection and suppresses tissue viral load and joint inflammation. Conversely, concomitant infection with both pathogens limits the peak of joint inflammation with no effect on CHIKV viraemia. Reduced peak joint inflammation is regulated by elevated apoptosis of CD4+ T-cells in the lymph nodes and disrupted CXCR3-mediated CD4+ T-cell migration that abolishes their infiltration into the joints. Virus clearance from tissues is delayed in both infection scenarios, and is associated with a disruption of B cell affinity-maturation in the spleen that reduces CHIKV-neutralizing antibody production.


Assuntos
Febre de Chikungunya/imunologia , Vírus Chikungunya/imunologia , Coinfecção/imunologia , Malária/imunologia , Plasmodium/imunologia , Animais , Apoptose/imunologia , Artrite/genética , Artrite/imunologia , Artrite/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Febre de Chikungunya/virologia , Vírus Chikungunya/fisiologia , Coinfecção/parasitologia , Coinfecção/virologia , Feminino , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interferon gama/metabolismo , Malária/metabolismo , Malária/parasitologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmodium/fisiologia , Carga Viral/imunologia , Viremia/imunologia , Viremia/virologia
8.
Viruses ; 10(5)2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29751486

RESUMO

Increasing incidences of Chikungunya virus (CHIKV) infection and co-infections with Dengue/Zika virus have highlighted the urgency for CHIKV management. Failure in developing effective vaccines or specific antivirals has fuelled further research. This review discusses updated strategies of CHIKV inhibition and provides possible future directions. In addition, it analyzes advances in CHIKV lifecycle, drug-target development, and potential hits obtained by in silico and experimental methods. Molecules identified with anti-CHIKV properties using traditional/rational drug design and their potential to succeed in subsequent stages of drug development have also been discussed. Possibilities of repurposing existing drugs based on their in vitro findings have also been elucidated. Probable modes of interference of these compounds at various stages of infection, including entry and replication, have been highlighted. The use of host factors as targets to identify antivirals against CHIKV has been addressed. While most of the earlier antivirals were effective in the early phases of the CHIKV life cycle, this review is also focused on drug candidates that are effective at multiple stages of its life cycle. Since most of these antivirals require validation in preclinical and clinical models, the challenges regarding this have been discussed and will provide critical information for further research.


Assuntos
Antivirais/farmacologia , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Vírus Chikungunya/fisiologia , Coinfecção , Desenho de Fármacos , Desenvolvimento de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Camundongos , Primatas
9.
J Evid Based Integr Med ; 23: 2156587218757661, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29484895

RESUMO

Chikungunya viral fever results in extreme morbidity and arthralgia in affected individuals. Currently, modern medicines providing symptomatic relief for the acute febrile phase and the chronic arthritic phase are only options available. Traditional Indian medical system, however, uses specific formulations for treatment of this infection; one such polyherbal formulation used to treat the postpyretic phase of chikungunya is amukkara choornam. The current study was undertaken to study the efficacy of amukkara choornam in the treatment of chikungunya in C57BL/6J mice. The formulation when administered to chikungunya-infected mice relieved morbidity and joint swelling. Analysis of virus clearance in brain and joint tissues on formulation treatment revealed a direct correlation of viral load in brain to morbidity during infection; likewise, joint swelling receded prior to complete viral clearance explaining possible immunomodulatory effect of amukkara choornam. This study provides insight into the possible mode of action of amukkara choornam during chikungunya.


Assuntos
Artralgia/tratamento farmacológico , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/fisiologia , Extratos Vegetais/administração & dosagem , Withania/química , Animais , Artralgia/virologia , Febre de Chikungunya/virologia , Vírus Chikungunya/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Índia , Masculino , Medicina Tradicional , Camundongos , Camundongos Endogâmicos C57BL , Morbidade , Carga Viral/efeitos dos fármacos
10.
Molecules ; 22(3)2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28327521

RESUMO

Dengue virus (DENV) and chikungunya virus (CHIKV) are reemergent arboviruses that are transmitted by mosquitoes of the Aedes genus. During the last several decades, these viruses have been responsible for millions of cases of infection and thousands of deaths worldwide. Therefore, several investigations were conducted over the past few years to find antiviral compounds for the treatment of DENV and CHIKV infections. One attractive strategy is the screening of compounds that target enzymes involved in the replication of both DENV and CHIKV. In this review, we describe advances in the evaluation of natural products targeting the enzymes involved in the replication of these viruses.


Assuntos
Antivirais/farmacologia , Produtos Biológicos/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Vírus Chikungunya/enzimologia , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/enzimologia , Inibidores Enzimáticos/farmacologia , Antivirais/química , Produtos Biológicos/química , Vírus Chikungunya/fisiologia , Vírus da Dengue/fisiologia , Inibidores Enzimáticos/química , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteínas Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos
11.
Parasit Vectors ; 8: 579, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26553263

RESUMO

BACKGROUND: The xCELLigence real-time cell analysis (RTCA) system is an established electronic cell sensor array. This system uses microelectronic biosensor technology that is verified for real-time, label-free, dynamic and non-offensive monitoring of cellular features, including detection of viral cytopathic effect (CPE). Screening viral replication inhibitors based on presence of CPE has been applied for different viruses, including chikungunya virus (CHIKV). However, most CPE-based methods, including MTT and MTS assays, do not provide information on the initiation of CPE nor the changes in reaction rate of the virus propagation over time. Therefore, in this study we developed an RTCA method as an accurate and time-based screen for antiviral compounds against CHIKV. METHODS: CHIKV-infected Vero cells were used as an in vitro model to establish the suitability of the RTCA system as a quantitative analysis method based on the induction of CPE. We also performed an MTS assay as a CPE-based conventional method. Experimental assays were carried out to evaluate the optimal seeding density of the Vero cells, cytotoxicity of the tested compounds, titration of CHIKV and the antiviral activity of ribavirin, which has been reported as an effective compound against CHIKV in vitro replication. RESULTS: The optimal time point for viral inoculation was 18 h after seeding the cells. We determined that the maximum non-toxic dose (MNTD) of ribavirin was 200 µg/ml for Vero cells. Regarding the dynamic monitoring of Vero cell properties during antiviral assay, approximately 34 h post-infection, the normalised Cell Index (CI) values of CHIKV-infected Vero cells started to decrease, while the vehicle controls did not show any significant changes. We also successfully showed the dose dependent manner of ribavirin as an approved in vitro inhibitor for CHIKV through our RTCA experiment. CONCLUSION: RTCA technology could become the prevailing tool in antiviral research due to its accurate output and the opportunity to carry out quality control and technical optimisation.


Assuntos
Antivirais/isolamento & purificação , Antivirais/farmacologia , Técnicas Biossensoriais/métodos , Vírus Chikungunya/efeitos dos fármacos , Vírus Chikungunya/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Replicação Viral/efeitos dos fármacos , Animais , Chlorocebus aethiops , Efeito Citopatogênico Viral/efeitos dos fármacos , Ribavirina/farmacologia , Células Vero
12.
Sci Rep ; 5: 14179, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26384169

RESUMO

Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus that has recently engendered large epidemics around the world. There is no specific antiviral for treatment of patients infected with CHIKV, and development of compounds with significant anti-CHIKV activity that can be further developed to a practical therapy is urgently required. Andrographolide is derived from Andrographis paniculata, a herb traditionally used to treat a number of conditions including infections. This study sought to determine the potential of andrographolide as an inhibitor of CHIKV infection. Andrographolide showed good inhibition of CHIKV infection and reduced virus production by approximately 3log10 with a 50% effective concentration (EC50) of 77 µM without cytotoxicity. Time-of-addition and RNA transfection studies showed that andrographolide affected CHIKV replication and the activity of andrographolide was shown to be cell type independent. This study suggests that andrographolide has the potential to be developed further as an anti-CHIKV therapeutic agent.


Assuntos
Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Diterpenos/farmacologia , Andrographis/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/virologia , Vírus Chikungunya/fisiologia , Cricetinae , Dosagem de Genes/efeitos dos fármacos , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , RNA Viral , Ensaio de Placa Viral , Replicação Viral/efeitos dos fármacos
13.
PLoS Negl Trop Dis ; 9(9): e0004007, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26340754

RESUMO

We recently described a new, live-attenuated vaccine candidate for chikungunya (CHIK) fever, CHIKV/IRES. This vaccine was shown to be well attenuated, immunogenic and efficacious in protecting against CHIK virus (CHIKV) challenge of mice and nonhuman primates. To further evaluate its preclinical safety, we compared CHIKV/IRES distribution and viral loads in interferon-α/ß receptor-incompetent A129 mice to another CHIK vaccine candidate, 181/clone25, which proved highly immunogenic but mildly reactive in human Phase I/II clinical trials. Compared to wild-type CHIK virus, (wt-CHIKV), both vaccines generated lower viral loads in a wide variety of tissues and organs, including the brain and leg muscle, but CHIKV/IRES exhibited marked restrictions in dissemination and viral loads compared to 181/clone25, and was never found outside the blood, spleen and muscle. Unlike wt-CHIKV, which caused disrupted splenic architecture and hepatic lesions, histopathological lesions were not observed in animals infected with either vaccine strain. To examine the stability of attenuation, both vaccines were passaged 5 times intracranially in infant A129 mice, then assessed for changes in virulence by comparing parental and passaged viruses for footpad swelling, weight stability and survival after subcutaneous infection. Whereas strain 181/clone25 p5 underwent a significant increase in virulence as measured by weight loss (from <10% to >30%) and mortality (from 0 to 100%), CHIKV/IRES underwent no detectible change in any measure of virulence (no significant weight loss and no mortality). These data indicate greater nonclinical safety of the CHIKV/IRES vaccine candidate compared to 181/clone25, further supporting its eligibility for human testing.


Assuntos
Febre de Chikungunya/prevenção & controle , Vacinas Virais/efeitos adversos , Vacinas Virais/imunologia , Estruturas Animais/virologia , Animais , Peso Corporal , Febre de Chikungunya/imunologia , Febre de Chikungunya/patologia , Vírus Chikungunya/isolamento & purificação , Vírus Chikungunya/fisiologia , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Feminino , Hospedeiro Imunocomprometido , Masculino , Camundongos , Análise de Sobrevida , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/imunologia , Carga Viral , Vacinas Virais/administração & dosagem , Virulência
14.
Fitoterapia ; 105: 202-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26151856

RESUMO

Recently, phorbol esters from Euphorbiaceae have been shown to elicit potent and selective antiviral activity on the replication of Chikungunya virus (CHIKV) in cell culture. With the objective to found new compounds with anti-CHIKV activities, 45 extracts from various plant parts of 11 Mediterranean Euphorbia and one Mercurialis species were evaluated for selective inhibition of CHIKV replication. All EtOAc extracts, especially those prepared from latex, exhibited significant and selective antiviral activity in a Chikungunya virus-cell-based assay. An LC-MS(2) dereplication method was then developed to investigate whether known diterpenoids with anti-CHIKV activity, such as the potent anti-CHIKV 12-O-tetradecanoylphorbol-13-acetate (TPA), phorbol-12,13-didecanoate, and prostratin as well as 24 other commercially available diterpenoids of tigliane-, ingenane-, and daphnane-type for which the anti-CHIKV activity have been established in advance (Nothias-Scaglia et al. 2015), were present in the Euphorbia extracts. Only ingenol-3-mebutate, 13-O-isobutyryl-12-deoxyphorbol-20-acetate, and ingenol-3,20-dibenzoate, all exhibiting weak anti-CHIKV activities, were detected in the EtOAc extracts of Euphorbia peplus, Euphorbia segetalis ssp. pinea, and Euphorbia pithyusa ssp. pithyusa. Given the potent anti-CHIKV activities of these Euphorbia extracts, the present study suggested that their antiviral activities are probably due to untargeted diterpenoids.


Assuntos
Antivirais/química , Vírus Chikungunya/efeitos dos fármacos , Euphorbia/química , Extratos Vegetais/química , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/isolamento & purificação , Vírus Chikungunya/fisiologia , Chlorocebus aethiops , Diterpenos/química , Diterpenos/isolamento & purificação , Estrutura Molecular , Células Vero
15.
J Virol ; 89(15): 8063-76, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26018160

RESUMO

UNLABELLED: Arthritogenic alphaviruses such as Ross River virus (RRV) and chikungunya virus (CHIKV) cause large-scale epidemics of severe musculoskeletal disease and have been progressively expanding their global distribution. Since its introduction in July 2014, CHIKV now circulates in the United States. The hallmark of alphavirus disease is crippling pain and inflammation of the joints, a similar immunopathology to rheumatoid arthritis. The use of glycans as novel therapeutics is an area of research that has increased in recent years. Here, we describe the promising therapeutic potential of the glycosaminoglycan (GAG)-like molecule pentosan polysulfate (PPS) to alleviate virus-induced arthritis. Mouse models of RRV and CHIKV disease were used to characterize the extent of cartilage damage in infection and investigate the potential of PPS to treat disease. This was assessed using histological analysis, real-time PCR, and fluorescence-activated cell sorting (FACS). Alphaviral infection resulted in cartilage destruction, the severity of which was alleviated by PPS therapy during RRV and CHIKV clinical disease. The reduction in cartilage damage corresponded with a significant reduction in immune infiltrates. Using multiplex bead arrays, PPS treatment was found to have significantly increased the anti-inflammatory cytokine interleukin-10 and reduced proinflammatory cytokines, typically correlated with disease severity. Furthermore, we reveal that the severe RRV-induced joint pathology, including thinning of articular cartilage and loss of proteoglycans in the cartilage matrix, was diminished with treatment. PPS is a promising new therapy for alphavirus-induced arthritis, acting to preserve the cartilage matrix, which is damaged during alphavirus infection. Overall, the data demonstrate the potential of glycotherapeutics as a new class of treatment for infectious arthritis. IMPORTANCE: The hallmark of alphavirus disease is crippling pain and joint arthritis, which often has an extended duration. In the past year, CHIKV has expanded into the Americas, with approximately 1 million cases reported to date, whereas RRV continues to circulate in the South Pacific. Currently, there is no licensed specific treatment for alphavirus disease, and the increasing spread of infection highlights an urgent need for therapeutic intervention strategies. Pentosan polysulfate (PPS) is a glycan derivative that is orally bioavailable, has few toxic side effects, and is currently licensed under the name Elmiron for the treatment of cystitis in the United States. Our findings show that RRV infection damages the articular cartilage, including a loss of proteoglycans within the joint. Furthermore, treatment with PPS reduced the severity of both RRV- and CHIKV-induced musculoskeletal disease, including a reduction in inflammation and joint swelling, suggesting that PPS is a promising candidate for drug repurposing for the treatment of alphavirus-induced arthritis.


Assuntos
Cartilagem/imunologia , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/fisiologia , Glicosaminoglicanos/administração & dosagem , Artropatias/tratamento farmacológico , Poliéster Sulfúrico de Pentosana/administração & dosagem , Animais , Cartilagem/efeitos dos fármacos , Cartilagem/virologia , Febre de Chikungunya/imunologia , Febre de Chikungunya/virologia , Modelos Animais de Doenças , Humanos , Artropatias/imunologia , Artropatias/virologia , Camundongos , Camundongos Endogâmicos C57BL
16.
Microbiol Immunol ; 59(3): 129-41, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25643977

RESUMO

Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus that recently caused large epidemics in islands in, and countries around, the Indian Ocean. There is currently no specific drug for therapeutic treatment or for use as a prophylactic agent against infection and no commercially available vaccine. Prohibitin has been identified as a receptor protein used by chikungunya virus to enter mammalian cells. Recently, synthetic sulfonyl amidines and flavaglines (FLs), a class of naturally occurring plant compounds with potent anti-cancer and cytoprotective and neuroprotective activities, have been shown to interact directly with prohibitin. This study therefore sought to determine whether three prohibitin ligands (sulfonyl amidine 1 m and the flavaglines FL3 and FL23) were able to inhibit CHIKV infection of mammalian Hek293T/17 cells. All three compounds inhibited infection and reduced virus production when cells were treated before infection but not when added after infection. Pretreatment of cells for only 15 minutes prior to infection followed by washing out of the compound resulted in significant inhibition of entry and virus production. These results suggest that further investigation of prohibitin ligands as potential Chikungunya virus entry inhibitors is warranted.


Assuntos
Antivirais/farmacologia , Benzofuranos/farmacologia , Febre de Chikungunya/virologia , Vírus Chikungunya/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Antivirais/síntese química , Benzofuranos/síntese química , Vírus Chikungunya/fisiologia , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Replicação Viral/efeitos dos fármacos
17.
Antiviral Res ; 113: 1-3, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25446334

RESUMO

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes chikungunya fever and has infected millions of people mainly in developing countries. The associated disease is characterized by rash, high fever and severe arthritis that can persist for years. CHIKV has adapted to Aedes albopictus, which also inhabits temperate regions, including Europe and the United States of America and might cause new, large outbreaks there. No treatment or licensed CHIKV vaccine exists. Epigallocatechin-3-gallate (EGCG), the major component of green tea, has, among other beneficial properties, antiviral activities. Therefore, we examined if EGCG has antiviral activity against CHIKV. EGCG inhibited CHIKV infection in vitro, blocked entry of CHIKV Env-pseudotyped lentiviral vectors and inhibited CHIKV attachment to target cells. Thus EGCG might be used as a lead structure to develop more effective antiviral drugs.


Assuntos
Antivirais/farmacologia , Catequina/análogos & derivados , Vírus Chikungunya/efeitos dos fármacos , Chá/química , Catequina/farmacologia , Vírus Chikungunya/fisiologia , Vetores Genéticos , Células HEK293 , Humanos , Ligação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
18.
Antiviral Res ; 108: 173-80, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24929084

RESUMO

Chikungunya virus (CHIKV) outbreaks have led to a serious economic burden, as the available treatment strategies can only alleviate disease symptoms, and no effective therapeutics or vaccines are currently available for human use. Here, we report the use of a new cost-effective approach involving production of a recombinant antiviral peptide-fusion protein that is scalable for the treatment of CHIKV infection. A peptide-fusion recombinant protein LATA-PAP1-THAN that was generated by joining Latarcin (LATA) peptide with the N-terminus of the PAP1 antiviral protein, and the Thanatin (THAN) peptide to the C-terminus, was produced in Escherichia coli as inclusion bodies. The antiviral LATA-PAP1-THAN protein showed 89.0% reduction of viral plaque formation compared with PAP1 (46.0%), LATA (67.0%) or THAN (79.3%) peptides alone. The LATA-PAP1-THAN protein reduced the viral RNA load that was 0.89-fold compared with the untreated control cells. We also showed that PAP1 resulted in 0.44-fold reduction, and THAN and LATA resulting in 0.78-fold and 0.73-fold reductions, respectively. The LATA-PAP1-THAN protein inhibited CHIKV replication in the Vero cells at an EC50 of 11.2µg/ml, which is approximately half of the EC50 of PAP1 (23.7µg/ml) and protected the CHIKV-infected mice at the dose of 0.75mg/ml. We concluded that production of antiviral peptide-fusion protein in E. coli as inclusion bodies could accentuate antiviral activities, enhance cellular internalisation, and could reduce product toxicity to host cells and is scalable to epidemic response quantities.


Assuntos
Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Antivirais/uso terapêutico , Febre de Chikungunya/prevenção & controle , Vírus Chikungunya/efeitos dos fármacos , Proteínas Inativadoras de Ribossomos Tipo 1/uso terapêutico , Venenos de Aranha/uso terapêutico , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antivirais/farmacologia , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/fisiologia , Chlorocebus aethiops , Modelos Animais de Doenças , Escherichia coli/genética , Expressão Gênica , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Proteínas Associadas a Pancreatite , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Proteínas Inativadoras de Ribossomos Tipo 1/genética , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Venenos de Aranha/genética , Venenos de Aranha/farmacologia , Resultado do Tratamento , Células Vero , Carga Viral , Ensaio de Placa Viral , Replicação Viral/efeitos dos fármacos
19.
Antiviral Res ; 98(1): 12-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23380636

RESUMO

Chikungunya virus (CHIKV) is an Arbovirus that is transmitted to humans primarily by the mosquito species Aedes aegypti. Infection with this pathogen is often associated with fever, rash and arthralgia. Neither a vaccine nor an antiviral drug is available for the prevention or treatment of this disease. Albeit considered a tropical pathogen, adaptation of the virus to the mosquito species Aedes albopictus, which is also very common in temperate zones, has resulted in recent outbreaks in Europe and the US. In the present study, we report on the discovery of a novel series of compounds that inhibit CHIKV replication in the low µM range. In particular, we initially performed a virtual screening simulation of ∼5 million compounds on the CHIKV nsP2, the viral protease, after which we investigated and explored the Structure-Activity Relationships of the hit identified in silico. Overall, a series of 26 compounds, including the original hit, was evaluated in a virus-cell-based CPE reduction assay. The study of such selective inhibitors will contribute to a better understanding of the CHIKV replication cycle and may represents a first step towards the development of a clinical candidate drug for the treatment of this disease.


Assuntos
Infecções por Alphavirus/virologia , Antivirais/química , Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Desenho de Fármacos , Infecções por Alphavirus/tratamento farmacológico , Antivirais/síntese química , Linhagem Celular , Febre de Chikungunya , Vírus Chikungunya/fisiologia , Desenho Assistido por Computador , Avaliação Pré-Clínica de Medicamentos , Humanos , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
20.
J Biomol Screen ; 18(2): 172-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22983165

RESUMO

Chikungunya virus (CHIKV) is a mosquito-transmitted pathogen responsible for an acute infection of abrupt onset, characterized by high fever, polyarthralgia, myalgia, headaches, chills, and rash. In 2006, CHIKV was responsible for an epidemic outbreak of unprecedented magnitude in the Indian Ocean, stressing the need for therapeutic approaches. Since then, we have acquired a better understanding of CHIKV biology, but we are still missing active molecules against this reemerging pathogen. We recently reported that the nonstructural nsP2 protein of CHIKV induces a transcriptional shutoff that allows the virus to block cellular antiviral response. This was demonstrated using various luciferase-based reporter gene assays, including a trans-reporter system where Gal4 DNA binding domain is fused to Fos transcription factor. Here, we turned this assay into a high-throughput screening system to identify small molecules targeting nsP2-mediated shutoff. Among 3040 molecules tested, we identified one natural compound that partially blocks nsP2 activity and inhibits CHIKV replication in vitro. This proof of concept suggests that similar functional assays could be developed to target other viral proteins mediating a cellular shutoff and identify innovative therapeutic molecules.


Assuntos
Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Vírus Chikungunya/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Fenótipo , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/química , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Humanos , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas , Proteínas não Estruturais Virais/química , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA