Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Viruses ; 14(8)2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-36016285

RESUMO

The Crimean Congo Hemorrhagic Fever Virus (CCHFV) is a tick-borne bunyavirus of the Narovirus genus, which is the causative agent of Crimean Congo Hemorrhagic Fever (CCHF). CCHF is endemic in Africa, the Middle East, Eastern Europe and Asia, with a high case-fatality rate of up to 50% in humans. Currently, there are no approved vaccines or effective therapies available for CCHF. The GEM-PA is a safe, versatile and effective carrier system, which offers a cost-efficient, high-throughput platform for recovery and purification of subunit proteins for vaccines. In the present study, based on a GEM-PA surface display system, a GEM-PA based vaccine expressing three subunit vaccine candidates (G-GP, including G-eGN, G-eGC and G-NAb) of CCHFV was developed, displaying the ectodomains of the structural glycoproteins eGN, eGC and NAb, respectively. According to the immunological assays including indirect-ELISA, a micro-neutralization test of pseudo-virus and ELISpot, 5 µg GPBLP3 combined with Montanide ISA 201VG plus Poly (I:C) adjuvant (A-G-GP-5 µg) elicited GP-specific humoral and cellular immunity in BALB/c mice after three vaccinations via subcutaneous injection (s.c.). The consistent data between IgG subtype and cytokine detection, ELISpot and cytokine detection indicated balanced Th1 and Th2 responses, of which G-eGN vaccines could elicit a stronger T-cell response post-vaccination, respectively. Moreover, all three vaccine candidates elicited high TNF-α, IL-6, and IL-10 cytokine levels in the supernatant of stimulated splenocytes in vitro. However, the neutralizing antibody (nAb) was only detected in A-G-eGC and A-G-eGC vaccination groups with the highest neutralizing titer of 128, suggesting that G-eGC could elicit a stronger humoral immune response. In conclusion, the GEM-PA surface display system could provide an efficient and convenient purification method for CCHFV subunit antigens, and the G-GP subunit vaccine candidates will be promising against CCHFV infections with excellent immunogenicity.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Citocinas , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Humanos , Imunidade Humoral , Camundongos , Camundongos Knockout , Óleo Mineral , Vacinas de Subunidades Antigênicas
2.
PLoS Pathog ; 13(5): e1006372, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28542609

RESUMO

The recent Middle East respiratory syndrome coronavirus (MERS-CoV), Ebola and Zika virus outbreaks exemplify the continued threat of (re-)emerging viruses to human health, and our inability to rapidly develop effective therapeutic countermeasures. Many viruses, including MERS-CoV and the Crimean-Congo hemorrhagic fever virus (CCHFV) encode deubiquitinating (DUB) enzymes that are critical for viral replication and pathogenicity. They bind and remove ubiquitin (Ub) and interferon stimulated gene 15 (ISG15) from cellular proteins to suppress host antiviral innate immune responses. A variety of viral DUBs (vDUBs), including the MERS-CoV papain-like protease, are responsible for cleaving the viral replicase polyproteins during replication, and are thereby critical components of the viral replication cycle. Together, this makes vDUBs highly attractive antiviral drug targets. However, structural similarity between the catalytic cores of vDUBs and human DUBs complicates the development of selective small molecule vDUB inhibitors. We have thus developed an alternative strategy to target the vDUB activity through a rational protein design approach. Here, we report the use of phage-displayed ubiquitin variant (UbV) libraries to rapidly identify potent and highly selective protein-based inhibitors targeting the DUB domains of MERS-CoV and CCHFV. UbVs bound the vDUBs with high affinity and specificity to inhibit deubiquitination, deISGylation and in the case of MERS-CoV also viral replicative polyprotein processing. Co-crystallization studies further revealed critical molecular interactions between UbVs and MERS-CoV or CCHFV vDUBs, accounting for the observed binding specificity and high affinity. Finally, expression of UbVs during MERS-CoV infection reduced infectious progeny titers by more than four orders of magnitude, demonstrating the remarkable potency of UbVs as antiviral agents. Our results thereby establish a strategy to produce protein-based inhibitors that could protect against a diverse range of viruses by providing UbVs via mRNA or protein delivery technologies or through transgenic techniques.


Assuntos
Antivirais/farmacologia , Infecções por Coronavirus/virologia , Inibidores Enzimáticos/farmacologia , Vírus da Febre Hemorrágica da Crimeia-Congo/efeitos dos fármacos , Febre Hemorrágica da Crimeia/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Ubiquitina/metabolismo , Proteínas Virais/antagonistas & inibidores , Antivirais/química , Infecções por Coronavirus/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Vírus da Febre Hemorrágica da Crimeia-Congo/enzimologia , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/metabolismo , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/enzimologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Ubiquitinação/efeitos dos fármacos , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
3.
PLoS Negl Trop Dis ; 9(12): e0004259, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26625182

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) is an often lethal, acute inflammatory illness that affects a large geographic area. The disease is caused by infection with CCHF virus (CCHFV), a nairovirus from the Bunyaviridae family. Basic research on CCHFV has been severely hampered by biosafety requirements and lack of available strains and molecular tools. We report the development of a CCHF transcription- and entry-competent virus-like particle (tecVLP) system that can be used to study cell entry and viral transcription/replication over a broad dynamic range (~4 orders of magnitude). The tecVLPs are morphologically similar to authentic CCHFV. Incubation of immortalized and primary human cells with tecVLPs results in a strong reporter signal that is sensitive to treatment with neutralizing monoclonal antibodies and by small molecule inhibitors of CCHFV. We used glycoproteins and minigenomes from divergent CCHFV strains to generate tecVLPs, and in doing so, we identified a monoclonal antibody that can prevent cell entry of tecVLPs containing glycoproteins from 3 pathogenic CCHFV strains. In addition, our data suggest that different glycoprotein moieties confer different cellular entry efficiencies, and that glycoproteins from the commonly used strain IbAr10200 have up to 100-fold lower ability to enter primary human cells compared to glycoproteins from pathogenic CCHFV strains.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Genes Reporter , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Transcrição Gênica/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/isolamento & purificação , Dados de Sequência Molecular , Análise de Sequência de DNA , Vírion/genética , Vírion/fisiologia , Vírion/ultraestrutura
4.
Virus Genes ; 51(2): 190-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26156848

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a deadly virus that has been listed in the Category C as a potential bioterror agent. There are no specific therapies against CCHFV, which urges identification of potential therapeutic targets and development of CCHFV therapies. CCHFV OTU protease takes an important role in viral invasion through antagonizing NF-κB signaling. Inhibition of CCHFV OTU protease by small molecules warrants an exciting potential as antiviral therapeutics. Here we report the expression and purification of a C-His-tagged recombinant CCHFV OTU protease in E. coli BL21 (DE3) host strain. Activity of the refolded purified recombinant viral OTU protease has been validated with a UB-AMC fluorescent assay. In addition, we show a dose-dependent inhibition of the viral OTU protease by two small molecules. This study provides a reliable approach for recombinant expression and purification of CCHFV OTU protease, and demonstrates validation of OTU protease activity and its inhibition based on a UB-AMC florescent assay.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Fluorometria/métodos , Vírus da Febre Hemorrágica da Crimeia-Congo/enzimologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/análise , Proteínas Virais/metabolismo , Escherichia coli/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Peptídeo Hidrolases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA