Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7965): 590-597, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258672

RESUMO

Rapidly evolving influenza A viruses (IAVs) and influenza B viruses (IBVs) are major causes of recurrent lower respiratory tract infections. Current influenza vaccines elicit antibodies predominantly to the highly variable head region of haemagglutinin and their effectiveness is limited by viral drift1 and suboptimal immune responses2. Here we describe a neuraminidase-targeting monoclonal antibody, FNI9, that potently inhibits the enzymatic activity of all group 1 and group 2 IAVs, as well as Victoria/2/87-like, Yamagata/16/88-like and ancestral IBVs. FNI9 broadly neutralizes seasonal IAVs and IBVs, including the immune-evading H3N2 strains bearing an N-glycan at position 245, and shows synergistic activity when combined with anti-haemagglutinin stem-directed antibodies. Structural analysis reveals that D107 in the FNI9 heavy chain complementarity-determinant region 3 mimics the interaction of the sialic acid carboxyl group with the three highly conserved arginine residues (R118, R292 and R371) of the neuraminidase catalytic site. FNI9 demonstrates potent prophylactic activity against lethal IAV and IBV infections in mice. The unprecedented breadth and potency of the FNI9 monoclonal antibody supports its development for the prevention of influenza illness by seasonal and pandemic viruses.


Assuntos
Anticorpos Antivirais , Especificidade de Anticorpos , Vírus da Influenza A , Vírus da Influenza B , Vacinas contra Influenza , Influenza Humana , Mimetismo Molecular , Neuraminidase , Animais , Humanos , Camundongos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Especificidade de Anticorpos/imunologia , Arginina/química , Domínio Catalítico , Hemaglutininas Virais/imunologia , Vírus da Influenza A/classificação , Vírus da Influenza A/enzimologia , Vírus da Influenza A/imunologia , Vírus da Influenza A Subtipo H3N2/enzimologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/classificação , Vírus da Influenza B/enzimologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/uso terapêutico , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Neuraminidase/antagonistas & inibidores , Neuraminidase/química , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Estações do Ano , Ácidos Siálicos/química
2.
J Ethnopharmacol ; 312: 116485, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37044232

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fu-Zheng-Xuan-Fei formula (FF) is a prescription that has been clinically used through the basic theory of traditional Chinese medicine (TCM) for treating viral pneumonia. Although FF possesses a prominent clinical therapeutic effect, seldom pharmacological studies have been reported on its anti-influenza B virus (IBV) activity. AIM OF THE STUDY: Influenza is an acute infectious respiratory disease caused by the influenza virus, which has high annual morbidity and mortality worldwide. With a global decline in the COVID-19 control, the infection rate of influenza virus is gradually increasing. Therefore, it is of great importance to develop novel drugs for the effective treatment of influenza virus. Apart from conventional antiviral drugs, TCM has been widely used in the clinical treatment of influenza in China. Therefore, studying the antiviral mechanism of TCM can facilitate the scientific development of TCM. MATERIALS AND METHODS: Madin-Darby canine kidney cells (MDCK) and BALB/c mice were infected with IBV, and FF was added to evaluate the anti-IBV effects of FF both in vitro and in vivo by Western blotting, immunofluorescence, flow cytometry, and pathological assessment. RESULTS: It was found that FF exhibited anti-viral activity against IBV infection both in vivo and in vitro, while inducing macrophage activation and promoting M1 macrophage polarization. In addition, FF effectively regulated the signal transducer and activator of transcription (STAT) signaling pathway-mediated Th17/Treg balance to improve the lung tissue damage caused by IBV infection-induced inflammation. The findings provided the scientific basis for the antiviral mechanism of FF against IBV infection. CONCLUSIONS: This study shows that FF is a potentially effective antiviral drug against IBV infection.


Assuntos
COVID-19 , Herpesvirus Cercopitecino 1 , Influenza Humana , Infecções por Orthomyxoviridae , Camundongos , Animais , Cães , Humanos , Vírus da Influenza B , Linfócitos T Reguladores , Ativação de Macrófagos , Antivirais/farmacologia , Antivirais/uso terapêutico , Influenza Humana/tratamento farmacológico , Células Madin Darby de Rim Canino
3.
Influenza Other Respir Viruses ; 17(3): e13112, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36875207

RESUMO

Background: Influenza virus causes significant morbidity and mortality with pandemic threat. Oleaceae Fructus Forsythiae is a medicinal herb. This study aimed to investigate antiviral effect of Phillyrin, a purified bioactive compound from this herb, and its reformulated preparation FS21 against influenza and its mechanism. Methods: Madin-Darby Canine Kidney (MDCK) cells were infected by one of six influenza viruses: five influenza A viruses (IAVs: three H1N1 and two H3N2) and one influenza B virus (IBV). Virus-induced cytopathic effects were observed and recorded under microscope. Viral replication and mRNA transcription were evaluated by quantitative polymerase chain reaction (qPCR) and protein expression by Western blot. Infectious virus production was assessed using TCID50 assay, and IC50 was calculated accordingly. Pretreatment and time-of-addition experiments with Phillyrin or FS21 added 1 h before or in early (0-3 h), mid (3-6 h), or late (6-9 h) stages of viral infection were performed to assess their antiviral effects. Mechanistic studies included hemagglutination and neuraminidase inhibition, viral binding and entry, endosomal acidification, and plasmid-based influenza RNA polymerase activity. Results: Phillyrin and FS21 had potent antiviral effects against all six IAV and IBV in a dose-dependent manner. Mechanistic studies showed that both suppressed influenza viral RNA polymerase with no effect on virus-mediated hemagglutination inhibition, viral binding or entry, endosomal acidification, or neuraminidase activity. Conclusions: Phillyrin and FS21 have broad and potent antiviral effects against influenza viruses with inhibition of viral RNA polymerase as the distinct antiviral mechanism.


Assuntos
Antivirais , Glucosídeos , Infecções por Orthomyxoviridae , Animais , Cães , Humanos , Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Neuraminidase , Proteínas do Complexo da Replicase Viral , Células Madin Darby de Rim Canino , Infecções por Orthomyxoviridae/tratamento farmacológico , Glucosídeos/farmacologia
4.
Nutrients ; 13(11)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34836165

RESUMO

It is difficult to match annual vaccines against the exact influenza strain that is spreading in any given flu season. Owing to the emergence of drug-resistant viral strains, new approaches for treating influenza are needed. Euglena gracilis (hereinafter Euglena), microalga, used as functional foods and supplements, have been shown to alleviate symptoms of influenza virus infection in mice. However, the mechanism underlying the inhibitory action of microalgae against the influenza virus is unknown. Here, we aimed to study the antiviral activity of Euglena extract against the influenza virus and the underlying action mechanism using Madin-Darby canine kidney (MDCK) cells. Euglena extract strongly inhibited infection by all influenza virus strains examined, including those resistant to the anti-influenza drugs oseltamivir and amantadine. A time-of-addition assay revealed that Euglena extract did not affect the cycle of virus replication, and cell pretreatment or prolonged treatment of infected cells reduced the virus titer. Thus, Euglena extract may activate the host cell defense mechanisms, rather than directly acting on the influenza virus. Moreover, various minerals, mainly zinc, in Euglena extract were found to be involved in the antiviral activity of the extract. In conclusion, Euglena extract could be a potent agent for preventing and treating influenza.


Assuntos
Antivirais , Misturas Complexas/farmacologia , Euglena , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza B/crescimento & desenvolvimento , Animais , Cães , Euglena/química , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Células Madin Darby de Rim Canino , Replicação Viral/efeitos dos fármacos , Zinco/análise , Acetato de Zinco/farmacologia
5.
Sci Rep ; 11(1): 9427, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941825

RESUMO

Influenza viruses cause significant morbidity and mortality worldwide. Long-term or frequent use of approved anti-influenza agents has resulted in drug-resistant strains, thereby necessitating the discovery of new drugs. In this study, we found aprotinin, a serine protease inhibitor, as an anti-influenza candidate through screening of compound libraries. Aprotinin has been previously reported to show inhibitory effects on a few influenza A virus (IAV) subtypes (e.g., seasonal H1N1 and H3N2). However, because there were no reports of its inhibitory effects on the other types of influenza viruses, we investigated the inhibitory effects of aprotinin in vitro on a wide range of influenza viruses, including avian and oseltamivir-resistant influenza virus strains. Our cell-based assay showed that aprotinin had inhibitory effects on seasonal human IAVs (H1N1 and H3N2 subtypes), avian IAVs (H5N2, H6N5, and H9N2 subtypes), an oseltamivir-resistant IAV, and a currently circulating influenza B virus. We have also confirmed its activity in mice infected with a lethal dose of influenza virus, showing a significant increase in survival rate. Our findings suggest that aprotinin has the capacity to inhibit a wide range of influenza virus subtypes and should be considered for development as a therapeutic agent against influenza.


Assuntos
Antivirais/farmacologia , Aprotinina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Infecções por Orthomyxoviridae/tratamento farmacológico , Inibidores de Serina Proteinase/farmacologia , Animais , Linhagem Celular , Cães , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H5N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H5N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H9N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/crescimento & desenvolvimento , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL
6.
Viruses ; 13(3)2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803680

RESUMO

BACKGROUND: Data suggest that pediatric patients might react differently to influenza vaccination, both in terms of immunity and side effects. We have recently shown that using a whole virion vaccine with aluminum phosphate adjuvants, reduced dose vaccines containing 6 µg of viral hemagglutinin (HA) per strain are immunogenic, and well tolerated in adult and elderly patients. Here we show the results of a multicenter clinical trial of pediatric patients, using reduced doses of a new, whole virion, aluminum phosphate adjuvanted vaccine (FluArt, Budapest, Hungary). METHODS: A total of 120 healthy volunteers were included in two age groups (3-11 years, receiving 3 µg of HA per strain, and 12-18 years, receiving 6 µg of HA per strain). We used hemagglutination inhibition testing to assess immunogenicity, based on EMA and FDA licensing criteria, including post/pre-vaccination geometric mean titer ratios, seroconversion and seropositivity rates. Safety and tolerability were assessed using CHMP guidelines. RESULTS: All subjects entered the study and were vaccinated (ITT population). All 120 subjects attended the control visit on Day 21 (PP population). All immunogenicity licensing criteria were met in both age groups for all three vaccine virus strains. No serious adverse events were detected and the vaccine was well tolerated by both age groups. DISCUSSION: Using a whole virion vaccine and aluminum phosphate adjuvants, a reduction in the amount of the viral hemmaglutinin is possible while maintaining immunogenicity, safety and tolerability in pediatric and adolescent patients.


Assuntos
Adjuvantes Imunológicos , Compostos de Alumínio , Vacinas contra Influenza , Influenza Humana/prevenção & controle , Fosfatos , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/efeitos adversos , Adolescente , Compostos de Alumínio/administração & dosagem , Compostos de Alumínio/efeitos adversos , Criança , Pré-Escolar , Feminino , Humanos , Hungria/epidemiologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/efeitos adversos , Masculino , Fosfatos/administração & dosagem , Fosfatos/efeitos adversos , Estudos Prospectivos , Vírion/imunologia
7.
J Med Virol ; 93(6): 3465-3472, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32827314

RESUMO

Influenza A virus (IAV) causes great morbidity and mortality worldwide every year. However, there are only a limited number of drugs clinically available against IAV infection. Further, emergence of drug-resistant strains can render those drugs ineffective. Thus there is an unmet medical need to develop new anti-influenza agents. In this study, we show that punicalagin from plants possesses strong anti-influenza activity with a low micromolar IC50 value in tissue culture. Using a battery of bioassays such as single-cycle replication assay, neuraminidase (NA) inhibition assay, and virus yield reduction assay, we demonstrate that the primary mechanism of action (MOA) of punicalagin is the NA-mediated viral release. Moreover, punicalagin can inhibit replication of different strains of influenza A and B viruses, including oseltamivir-resistant virus (NA/H274Y), indicating that punicalagin is a broad spectrum antiviral against both IAV and IBV. Further, although punicalagin targets NA like oseltamivir, it has a different MOA. These results suggest that punicalagin is an influenza NA inhibitor that may be further developed as a novel antiviral against influenza viruses.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Taninos Hidrolisáveis/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Neuraminidase/antagonistas & inibidores , Extratos Vegetais/farmacologia , Animais , Cães , Vírus da Influenza A/enzimologia , Concentração Inibidora 50 , Células Madin Darby de Rim Canino , Replicação Viral/efeitos dos fármacos
8.
Cytokine ; 138: 155400, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33338918

RESUMO

Influenza B virus (IBV) causes respiratory infectious disease. Cytokines are important immune mediators during infectious diseases. Cortisol and stress have been related to respiratory infection susceptibility and cytokine regulation. Little is known about systemic cytokines, cortisol, and perceived stress in the early stages of IBV infection. We researched the systemic cytokines and cortisol, as well as the perceived stress and blood cell count in patients infected with IBV. The diagnosis was established using the Luminex xTAG RVP kit and confirmed with qRT-PCR for IBV viral load. The perceived stress was evaluated using the perceived stress scale (PSS-10). Twenty-five plasma cytokines were determined using multiplex immunoassay and cortisol by ELISA. The leukocyte differential count was measured with a standard laboratory protocol. Th1, Th17, and IL-10 cytokines were higher in IBV infected patients (P < 0.05). Leukocytes and neutrophil count negatively correlated with viral load (P < 0.05). Perceived stress had a negative effect on monocyte and systemic cytokines in IBV infected patients (P < 0.05). Cortisol was higher in patients infected with IBV and correlated positively with CCL20 (P < 0.05). Cortisol showed a positive effect on most of the systemic cytokines (P < 0.05). In conclusion, a cytokine pattern was found in IBV infected patients, as well as the possible role of leukocyte counts in the control of IBV. Our results suggest the importance of cortisol and perceived stress on systemic cytokines in patients infected with IBV, but more studies are needed to understand their role in cytokine production in respiratory infectious disease.


Assuntos
Citocinas/sangue , Hidrocortisona/sangue , Influenza Humana/sangue , Percepção , Estresse Psicológico , Adulto , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Vírus da Influenza B/metabolismo , Leucócitos/citologia , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Carga Viral
9.
PLoS Pathog ; 16(6): e1008592, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32555740

RESUMO

The neuraminidase (NA) inhibitor (NAI) oseltamivir (OST) is the most widely used influenza antiviral drug. Several NA amino acid substitutions are reported to reduce viral susceptibility to OST in in vitro assays. However, whether there is a correlation between the level of reduction in susceptibility in vitro and the efficacy of OST against these viruses in vivo is not well understood. In this study, a ferret model was utilised to evaluate OST efficacy against circulating influenza A and B viruses with a range of in vitro generated 50% inhibitory concentrations (IC50) values for OST. OST efficacy against an A(H1N1)pdm09 and an A(H1N1)pdm09 virus with the H275Y substitution in neuraminidase was also tested in the macaque model. The results from this study showed that OST had a significant impact on virological parameters compared to placebo treatment of ferrets infected with wild-type influenza A viruses with normal IC50 values (~1 nM). However, this efficacy was lower against wild-type influenza B and other viruses with higher IC50 values. Differing pathogenicity of the viruses made evaluation of clinical parameters difficult, although some effect of OST in reducing clinical signs was observed with influenza A(H1N1) and A(H1N1)pdm09 (H275Y) viruses. Viral titres in macaques were too low to draw conclusive results. Analysis of the ferret data revealed a correlation between IC50 and OST efficacy in reducing viral shedding but highlighted that the current WHO guidelines/criteria for defining normal, reduced or highly reduced inhibition in influenza B viruses based on in vitro data are not well aligned with the low in vivo OST efficacy observed for both wild-type influenza B viruses and those with reduced OST susceptibility.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Infecções por Orthomyxoviridae , Oseltamivir , Animais , Feminino , Masculino , Substituição de Aminoácidos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Furões , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Vírus da Influenza B/genética , Vírus da Influenza B/metabolismo , Macaca fascicularis , Macrolídeos , Mutação de Sentido Incorreto , Neuraminidase/genética , Neuraminidase/metabolismo , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/patologia , Oseltamivir/farmacologia
11.
Viruses ; 12(5)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443510

RESUMO

Influenza virus infections can lead to viral pneumonia and acute respiratory distress syndrome in severe cases, causing significant morbidity and mortality and posing a great threat to human health. Because of the diversity of influenza virus strains and drug resistance to the current direct antiviral agents, there have been no effective drugs as yet to cure all patients infected by influenza viruses. Natural products from plants contain compounds with diverse structures that have the potential to interact with multiple host and virus factors. In this study, we identified the ethanol extract of Caesalpinia decapetala (Roth) Alston (EEC) as an inhibitor against the replication of a panel of influenza A and B viruses both on human pulmonary epithelial A549 and human monocytic U937 cells. The animal study revealed that EEC administration reduces the weight loss and improves the survival rate of mice infected with lethal influenza virus. Also, EEC treatment attenuated lung injury and reduced virus titer significantly. In conclusion, we showed that EEC has antiviral activity both in vitro and in vivo, suggesting that the plant C. decapetala has the potential to be further developed as a resource of new anti-influenza drugs.


Assuntos
Antivirais/administração & dosagem , Caesalpinia/química , Infecções por Orthomyxoviridae/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Animais , Antivirais/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cães , Etanol/química , Feminino , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Neuraminidase/antagonistas & inibidores , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
12.
Eur J Clin Microbiol Infect Dis ; 39(7): 1201-1208, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32056049

RESUMO

Influenza affects approximately 1 billion individuals each year resulting in between 290,000 and 650,000 deaths. Young children and immunocompromised individuals are at a particularly high risk of severe illness attributable to influenza and these are also the groups of individuals in which reduced susceptibility to neuraminidase inhibitors is most frequently seen. High levels of resistance emerged with previous adamantane therapy for influenza A and despite no longer being used to treat influenza and therefore lack of selection pressure, high levels of adamantane resistance continue to persist in currently circulating influenza A strains. Resistance to neuraminidase inhibitors has remained at low levels to date and the majority of resistance is seen in influenza A H1N1 pdm09 infected immunocompromised individuals receiving oseltamivir but is also seen less frequently with influenza A H3N2 and B. Rarely, resistance is also seen in the immunocompetent. There is evidence to suggest that these resistant strains (particularly H1N1 pdm09) are able to maintain their replicative fitness and transmissibility, although there is no clear evidence that being infected with a resistant strain is associated with a worse clinical outcome. Should neuraminidase inhibitor resistance become more problematic in the future, there are a small number of  alternative novel agents within the anti-influenza armoury with different mechanisms of action to neuraminidase inhibitors and therefore potentially effective against neuraminidase inhibitor resistant strains. Limited data from use of novel agents such as baloxavir marboxil and favipiravir, does however show that resistance variants can also emerge in the presence of these drugs.


Assuntos
Antivirais/uso terapêutico , Farmacorresistência Viral , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Inibidores Enzimáticos/uso terapêutico , Humanos , Vírus da Influenza A/genética , Vírus da Influenza B/genética , Influenza Humana/virologia , Testes de Sensibilidade Microbiana , Neuraminidase/antagonistas & inibidores , Neuraminidase/genética , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética
13.
J Virol ; 94(7)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31941776

RESUMO

Influenza A (IAV) and influenza B (IBV) viruses are highly contagious pathogens that cause fatal respiratory disease every year, with high economic impact. In addition, IAV can cause pandemic infections with great consequences when new viruses are introduced into humans. In this study, we evaluated 10 previously described compounds with antiviral activity against mammarenaviruses for their ability to inhibit IAV infection using our recently described bireporter influenza A/Puerto Rico/8/34 (PR8) H1N1 (BIRFLU). Among the 10 tested compounds, eight (antimycin A [AmA], brequinar [BRQ], 6-azauridine, azaribine, pyrazofurin [PF], AVN-944, mycophenolate mofetil [MMF], and mycophenolic acid [MPA]), but not obatoclax or Osu-03012, showed potent anti-influenza virus activity under posttreatment conditions [median 50% effective concentration (EC50) = 3.80 nM to 1.73 µM; selective index SI for 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, >28.90 to 13,157.89]. AmA, 6-azauridine, azaribine, and PF also showed potent inhibitory effect in pretreatment (EC50 = 0.14 µM to 0.55 µM; SI-MTT = 70.12 to >357.14) or cotreatment (EC50 = 34.69 nM to 7.52 µM; SI-MTT = 5.24 to > 1,441.33) settings. All of the compounds tested inhibited viral genome replication and gene transcription, and none of them affected host cellular RNA polymerase II activities. The antiviral activity of the eight identified compounds against BIRFLU was further confirmed with seasonal IAVs (A/California/04/2009 H1N1 and A/Wyoming/3/2003 H3N2) and an IBV (B/Brisbane/60/2008, Victoria lineage), demonstrating their broad-spectrum prophylactic and therapeutic activity against currently circulating influenza viruses in humans. Together, our results identified a new set of antiviral compounds for the potential treatment of influenza viral infections.IMPORTANCE Influenza viruses are highly contagious pathogens and are a major threat to human health. Vaccination remains the most effective tool to protect humans against influenza infection. However, vaccination does not always guarantee complete protection against drifted or, more noticeably, shifted influenza viruses. Although U.S. Food and Drug Administration (FDA) drugs are approved for the treatment of influenza infections, influenza viruses resistant to current FDA antivirals have been reported and continue to emerge. Therefore, there is an urgent need to find novel antivirals for the treatment of influenza viral infections in humans, a search that could be expedited by repurposing currently approved drugs. In this study, we assessed the influenza antiviral activity of 10 compounds previously shown to inhibit mammarenavirus infection. Among them, eight drugs showed antiviral activities, providing a new battery of drugs that could be used for the treatment of influenza infections.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Células A549 , Animais , Proliferação de Células , Cães , Avaliação Pré-Clínica de Medicamentos , Genoma Viral , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos da radiação , Vírus da Influenza A Subtipo H3N2/fisiologia , Vírus da Influenza B/fisiologia , Células Madin Darby de Rim Canino , Replicação Viral/efeitos dos fármacos
14.
Phytomedicine ; 64: 152904, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31454654

RESUMO

BACKGROUND: Millions of people are infected by the influenza virus worldwide every year. Current selections of anti-influenza agents are limited and their effectiveness and drug resistance are still of concern. PURPOSE: Investigation on in vitro and in vivo effect of aloin from Aloe vera leaves against influenza virus infection. METHODS: In vitro antiviral property of aloin was measured by plaque reduction assay in which MDCK cells were infected with oseltamivir-sensitive A(H1N1)pdm09, oseltamivir-resistant A(H1N1)pdm09, H1N1 or H3N2 influenza A or with influenza B viruses in the presence of aloin. In vivo activity was tested in H1N1 influenza virus infected mice. Aloin-mediated inhibition of influenza neuraminidase activity was tested by MUNANA assay. Aloin treatment-mediated modulation of anti-influenza immunity was tested by the study of hemagglutinin-specific T cells in vivo. RESULTS: Aloin significantly reduced in vitro infection by all the tested strains of influenza viruses, including oseltamivir-resistant A(H1N1)pdm09 influenza viruses, with an average IC50 value 91.83 ± 18.97 µM. In H1N1 influenza virus infected mice, aloin treatment (intraperitoneal, once daily for 5 days) reduced virus load in the lungs and attenuated body weight loss and mortality. Adjuvant aloin treatment also improved the outcome with delayed oseltamivir treatment. Aloin inhibited viral neuraminidase and impeded neuraminidase-mediated TGF-ß activation. Viral neuraminidase mediated immune suppression with TGF-ß was constrained and influenza hemagglutinin-specific T cell immunity was increased. There was more infiltration of hemagglutinin-specific CD4+ and CD8+ T cells in the lungs and their production of effector cytokines IFN-γ and TNF-α was boosted. CONCLUSION: Aloin from Aloe vera leaves is a potent anti-influenza compound that inhibits viral neuraminidase activity, even of the oseltamivir-resistant influenza virus. With suppression of this virus machinery, aloin boosts host immunity with augmented hemagglutinin-specific T cell response to the infection. In addition, in the context of compromised benefit with delayed oseltamivir treatment, adjuvant aloin treatment ameliorates the disease and improves survival. Taken together, aloin has the potential to be further evaluated for clinical applications in human influenza.


Assuntos
Aloe/química , Antivirais/farmacologia , Emodina/análogos & derivados , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Neuraminidase/antagonistas & inibidores , Animais , Linhagem Celular , Farmacorresistência Viral , Emodina/farmacologia , Hemaglutininas/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/enzimologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/enzimologia , Vírus da Influenza B/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oseltamivir/farmacologia , Folhas de Planta/química , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Proteínas Virais/antagonistas & inibidores
15.
PLoS One ; 14(5): e0217307, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31107922

RESUMO

Baloxavir marboxil (BXM) is an orally available small molecule inhibitor of cap-dependent endonuclease (CEN), an essential enzyme in the initiation of mRNA synthesis of influenza viruses. In the present study, we evaluated the efficacy of BXM against influenza virus infection in mouse models. Single-day oral administration of BXM completely prevented mortality due to infection with influenza A and B virus in mice. Moreover, 5-day repeated administration of BXM was more effective for reducing mortality and body weight loss in mice infected with influenza A virus than oseltamivir phosphate (OSP), even when the treatment was delayed up to 96 hours post infection (p.i.). Notably, administration of BXM, starting at 72 hours p.i. led to significant decrease in virus titers of >2-log10 reduction compared to the vehicle control within 24 hours after administration. Virus reduction in the lung was significantly greater than that observed with OSP. In addition, profound and sustained reduction of virus titer was observed in the immunocompromised mouse model without emergence of variants possessing treatment-emergent amino acid substitutions in the target protein. In our immunocompetent and immunocompromised mouse models, delayed treatment with BXM resulted in rapid and potent reduction in infectious virus titer and prevention of signs of influenza infection, suggesting that BXM could extend the therapeutic window for patients with influenza virus infection regardless of the host immune status.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Orthomyxoviridae/efeitos dos fármacos , Oxazinas/farmacologia , Piridinas/farmacologia , Tiepinas/farmacologia , Triazinas/farmacologia , Administração Oral , Animais , Antivirais/administração & dosagem , Dibenzotiepinas , Modelos Animais de Doenças , Esquema de Medicação , Inibidores Enzimáticos/administração & dosagem , Feminino , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunocompetência , Hospedeiro Imunocomprometido , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/fisiologia , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/fisiologia , Influenza Humana/tratamento farmacológico , Influenza Humana/imunologia , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos BALB C , Morfolinas , Orthomyxoviridae/fisiologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Oseltamivir/farmacologia , Oxazinas/administração & dosagem , Piridinas/administração & dosagem , Piridonas , Tiepinas/administração & dosagem , Triazinas/administração & dosagem , Replicação Viral/efeitos dos fármacos
16.
Med Clin (Barc) ; 153(10): 380-386, 2019 11 29.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-31060878

RESUMO

BACKGROUND AND OBJECTIVES: Influenza vaccine is recommended for patients with autoimmune inflammatory rheumatic diseases who receive biological therapy. To evaluate if biological therapy impairs immunization after seasonal influenza vaccine. MATERIAL AND METHODS: Patients with inflammatory arthopathies, psoriasis, inflammatory bowel disease or connective tissue diseases who were receiving or were going to initiate biological therapy were included and vaccinated during 2014-2015 influenza season. ELISA was used to measure influenza antigen A and B antibodies, before and after vaccination. Demographic parameters, diagnosis and kind of treatment were recorded and their influence on the final serological status against influenza was studied. RESULTS: 253 subjects were analyzed. After vaccination, 77% of participants presented detectable antibodies against antigen A and 50.6% of them had detectable antibodies against antigen B. Final seropositivity rate against antigen B antibodies increased from baseline (50.6% vs 43.5%, p<0.001). Anti-TNF drugs were associated with better response and rituximab with the worst (79.2% vs 55.0% for final seropositivity against antigen A, p=0.020). Vaccine response in the rituximab group tended to improve when the interval between the drug administration and the vaccination was at least 12 weeks (seropositivity rate 80.0% in those with the longer interval vs 25.0% in the other group, p=0.054). CONCLUSIONS: Among the patients on biological therapy vaccinated against influenza, anti-TNF therapy was identified as a predictive factor of final seropositivity. Rituximab presented a lower rate of final seropositivity, which could be increased with an accurate administration schedule.


Assuntos
Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Antivirais/sangue , Terapia Biológica/efeitos adversos , Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Biomarcadores/sangue , Doenças do Tecido Conjuntivo/tratamento farmacológico , Doenças do Tecido Conjuntivo/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Seguimentos , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/imunologia , Masculino , Pessoa de Meia-Idade , Doenças Reumáticas/tratamento farmacológico , Doenças Reumáticas/imunologia
17.
Food Chem Toxicol ; 125: 313-321, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30654095

RESUMO

Dianthus superbus (DS) is a traditional medicinal herb well known for its medicinal and therapeutic potential and widely distributed in various Asian countries. The ethyl acetate (EA), butanol (Bu) and distilled water (DW) extracts of DS assessed for extraction of bioactive compounds and their biological activities. The chemical analysis was done using LC-MS/MS and antioxidant, anticancer and antiviral activities were determined. EA extracts showed strong anticancer activity with IC50 of 9.5, 13.8 and 69.9 µg/mL on SKOV, NCL-H1299 and Caski cancer cell lines, respectively. The Bu extracts exhibited strongest antiviral activity with respect to both influenza A and B viruses with IC50 values of 4.97 and 3.9 µg/mL, respectively. Also the metabolic profile for EA, Bu and DW extracts shows high variations and influence precisely the antioxidant, anticancer and antiviral properties. The quercetin 3- rutinoside and isorhamnetin 3- glucoside showed higher neuraminidase inhibition activity in dose dependent manner. Molecular docking study revealed that flavonol glycosides have higher binding activities towards influenza polymerase membrane glycoprotein. Correlation study showed that flavonol glycosides were linked to anti-influenza activity and cyclic peptides with anticancer activities. This study provides vital information for effective utilization of DS for medicinal, food and therapeutic purposes.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Antivirais/farmacologia , Dianthus/química , Flavonóis/farmacologia , Glicosídeos/farmacologia , Animais , Antineoplásicos/isolamento & purificação , Antioxidantes/isolamento & purificação , Antivirais/isolamento & purificação , Linhagem Celular Tumoral , Cães , Flavonóis/isolamento & purificação , Glicosídeos/isolamento & purificação , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Células Madin Darby de Rim Canino , Simulação de Acoplamento Molecular , Neuraminidase/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores
18.
Mol Divers ; 23(1): 1-9, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29971616

RESUMO

Influenza viruses are responsible for seasonal epidemics and occasional pandemics, which cause significant morbidity and mortality. Although several drugs (adamantanes and neuraminidase inhibitors) are available in the market, the worldwide spread of drug-resistant influenza strains poses an urgent need for novel antiviral drugs. Artemisia rupestris L. is a folk medicine used to treat cold. In this paper, we structurally modified rupestonic acid, a bioactive component of A. rupestris, to synthesize a series of 2-substituted rupestonic acid methyl esters (3a-3o). Their structures were fully characterized by 1H NMR, 13C NMR, HRMS spectra. Among them, compounds 3b and 3c exhibited potent activities against influenza H1N1 with micromolar IC50 values and might serve as new lead compounds for the treatment of influenza.


Assuntos
Antivirais/farmacologia , Azulenos/química , Azulenos/farmacologia , Ésteres/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Estrutura Molecular
19.
Phytother Res ; 32(12): 2475-2479, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30187587

RESUMO

This study aimed to investigate in vitro the anti-influenza B/Lee/40 virus effect of sakuranetin and mode of its action. The sakuranetin exhibited potent antiviral activity against influenza B/Lee/40 virus, reducing the formation of a visible cytopathic effect, with a 50% inhibitory concentration (IC50 ) of 7.21 µg/ml and no cytotoxicity at a concentration of 100 µg/ml, and the derived therapeutic index (TI) was >13.87. Oseltamivir showed weak anti-influenza B/Lee/40 virus activity with IC50 of 80.74 µg/ml, 50% cytotoxicity concentration of >100 µg/ml, and TI of >1.24. Sakuranetin also showed effective inhibitory effects when added at the viral attachment, entry, and postentry steps. Moreover, sakuranetin effectively inactivated influenza B/Lee/40 virus infection in dose- and temperature-dependent manners. Sakuranetin indicated an inhibitory effect in viral RNA synthesis in the presence of 100 µg/ml of sakuranetin. Overall, this research revealed that sakuranetin could inhibit influenza B/Lee/40 virus replication and that sakuranetin may be involved in the virus attachment, entry, and postentry. Therefore, sakuranetin is a good candidate for a chemopreventive agent for influenza virus-related diseases.


Assuntos
Flavonoides/farmacologia , Vírus da Influenza B/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Cães , Vírus da Influenza B/fisiologia , Concentração Inibidora 50 , Células Madin Darby de Rim Canino , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Transdução de Sinais/efeitos dos fármacos
20.
Acta Pharmacol Sin ; 39(12): 1913-1922, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29802302

RESUMO

Host cdc2-like kinase 1 (CLK1) is responsible for the alternative splicing of the influenza virus M2 gene during influenza virus infection and replication that has been recognized as a potential anti-influenza virus target. In this study, we showed that gallocatechin-7-gallate (J10688), a novel CLK1 inhibitor isolated from Pithecellobium clypearia Benth, exerted potent anti-influenza virus activity in vivo and in vitro. ICR mice were intranasally infected with a lethal dose of H1N1. Administration of J10688 (30 mg·kg-1·d-1, iv, for 5 days) significantly increased the survival rate of the H1N1-infected mice to 91.67% and prolong their mean survival time from 5.83 ± 1.74 days to 13.66 ± 1.15 days. J10688 administration also slowed down body weight loss, significantly alleviated influenza-induced acute lung injury, reduced lung virus titer, elevated the spleen and thymus indexes, and enhanced the immunological function. We further explored its anti-influenza mechanisms in the H1N1-infected A549 cells: as a novel CLK1 inhibitor, J10688 (3, 10, 30 µmol/L) dose-dependently impaired synthesis of the viral proteins NP and M2, and significantly downregulated the phosphorylation of splicing factors SF2/ASF and SC35, which regulate virus M2 gene alternative splicing. As a novel CLK1 inhibitor with potent anti-influenza activity in vitro and in vivo, J10688 could be a promising antiviral drug for the therapy of influenza A virus infection.


Assuntos
Antivirais/farmacologia , Catequina/análogos & derivados , Fabaceae/química , Infecções por Orthomyxoviridae/tratamento farmacológico , Células A549 , Animais , Catequina/farmacologia , Cães , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Células Madin Darby de Rim Canino , Masculino , Camundongos Endogâmicos ICR , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Baço/patologia , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA