Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 114(3): 298-308, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24045127

RESUMO

The adult American lobster (Homarus americanus) is susceptible to few naturally occurring pathogens, and no viral pathogen is known to exist. Despite this, relatively little is known about the H. americanus immune system and nothing is known about its potential viral immune response. Hundreds of rural communities in Atlantic Canada rely on the lobster fishery for their economic sustainability and could be devastated by large-scale pathogen-mediated mortality events. The White Spot Syndrome Virus is the most economically devastating viral pathogen to global shrimp aquaculture production and has been proposed to be capable of infecting all decapod crustaceans including the European Lobster. An in vivo WSSV injection challenge was conducted in H. americanus and WSSV was found to be capable of infecting and replicating within lobsters held at 20°C. The in vivo WSSV challenge also generated the first viral disease model of H. americanus and allowed for the high-throughput examination of transcriptomic changes that occur during viral infection. Microarray analysis found 136 differentially expressed genes and the expression of a subset of these genes was verified using RT-qPCR. Anti-lipopolysaccharide isoforms and acute phase serum amyloid protein A expression did not change during WSSV infection, contrary to previous findings during bacterial and parasitic infection of H. americanus. This, along with the differential gene expression of thioredoxin and trypsin isoforms, provides compelling evidence that H. americanus is capable of mounting an immune response specific to infection by different pathogen classes.


Assuntos
Imunidade Humoral , Nephropidae/virologia , Vírus da Síndrome da Mancha Branca 1/imunologia , Animais , Aquicultura , Análise por Conglomerados , Resistência à Doença , Interações Hospedeiro-Patógeno , Masculino , Nephropidae/imunologia , Transcriptoma , Vírus da Síndrome da Mancha Branca 1/isolamento & purificação , Vírus da Síndrome da Mancha Branca 1/patogenicidade
2.
J Invertebr Pathol ; 105(3): 312-21, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20807537

RESUMO

Immortal cell lines have not yet been reported from Penaeus monodon, which delimits the prospects of investigating the associated viral pathogens especially white spot syndrome virus (WSSV). In this context, a method of developing primary hemocyte culture from this crustacean has been standardized by employing modified double strength Leibovitz-15 (L-15) growth medium supplemented with 2% glucose, MEM vitamins (1×), tryptose phosphate broth (2.95 gl⁻¹), 20% FBS, N-phenylthiourea (0.2 mM), 0.06 µg ml⁻¹ chloramphenicol, 100 µg ml⁻¹ streptomycin and 100 IU ml⁻¹ penicillin and hemolymph drawn from shrimp grown under a bio-secured recirculating aquaculture system (RAS). In this medium the hemocytes remained viable up to 8 days. 5-Bromo-2'-deoxyuridine (BrdU) labeling assay revealed its incorporation in 22 ± 7% of cells at 24h. Susceptibility of the cells to WSSV was confirmed by immunofluorescence assay using a monoclonal antibody against 28 kDa envelope protein of WSSV. A convenient method for determining virus titer as MTT(50)/ml was standardized employing the primary hemocyte culture. Expression of viral genes and cellular immune genes were also investigated. The cell culture could be demonstrated for determining toxicity of a management chemical (benzalkonium chloride) by determining its IC(50). The primary hemocyte culture could serve as a model for WSSV titration and viral and cellular immune related gene expression and also for investigations on cytotoxicity of aquaculture drugs and chemicals.


Assuntos
Técnicas de Cultura de Células/métodos , Hemócitos/virologia , Penaeidae/virologia , Vírus da Síndrome da Mancha Branca 1/isolamento & purificação , Animais , Aquicultura/métodos , Células Cultivadas , Imunofluorescência , Expressão Gênica , Genes Virais , Modelos Biológicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Viroses/genética , Viroses/imunologia , Vírus da Síndrome da Mancha Branca 1/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA