Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884427

RESUMO

Little is known about the effect of lead on the activity of the vacuolar K+ channels. Here, the patch-clamp technique was used to compare the impact of lead (PbCl2) on the slow-activating (SV) and fast-activating (FV) vacuolar channels. It was revealed that, under symmetrical 100-mM K+, the macroscopic currents of the SV channels exhibited a typical slow activation and a strong outward rectification of the steady-state currents, while the macroscopic currents of the FV channels displayed instantaneous currents, which, at the positive potentials, were about three-fold greater compared to the one at the negative potentials. When PbCl2 was added to the bath solution at a final concentration of 100 µM, it decreased the macroscopic outward currents of both channels but did not change the inward currents. The single-channel recordings demonstrated that cytosolic lead causes this macroscopic effect by a decrease of the single-channel conductance and decreases the channel open probability. We propose that cytosolic lead reduces the current flowing through the SV and FV channels, which causes a decrease of the K+ fluxes from the cytosol to the vacuole. This finding may, at least in part, explain the mechanism by which cytosolic Pb2+ reduces the growth of plant cells.


Assuntos
Beta vulgaris/crescimento & desenvolvimento , Chumbo/farmacologia , Canais de Potássio/metabolismo , Vacúolos/metabolismo , Beta vulgaris/efeitos dos fármacos , Beta vulgaris/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Patch-Clamp , Proteínas de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Canais de Potássio/efeitos dos fármacos , Vacúolos/efeitos dos fármacos
2.
Toxicology ; 459: 152855, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34252479

RESUMO

Cadmium (Cd) is a toxic heavy metal that accumulates in the brain and causes a series of histopathological changes. Selenium (Se) exerts a crucial function in protecting damage caused by toxic heavy metals, but its potential mechanism is rarely studied. The main purpose of this study is to explore the protective effects of Se on Cd-induced oxidative stress and autophagy in rabbit cerebrum. Forty rabbits were randomly divided into four groups and treated as follows: Control group, Cd (1 mg/kg⋅BW) group, Se (0.5 mg/kg⋅BW) group and Cd (1 mg/kg⋅BW)+Se (0.5 mg/kg⋅BW) group, with 30 days feeding management. Our results suggested that Se treatment significantly suppressed the Cd-induced degenerative changes including cell necrosis, vacuolization, and atrophic neurons. In addition, Se decreased the contents of MDA and H2O2 and increased the activities of CAT, SOD, GST, GSH and GSH-Px, alleviating the imbalance of the redox system induced by Cd. Furthermore, Cd caused the up-regulation of the mRNA levels of autophagy-related genes (ATG3, ATG5, ATG7, ATG12 and p62), AMPK (Prkaa1, Prkaa2, Prkab1, Prkab2, Prkag2, Prkag3) and Nrf2 (Nrf2, HO-1 and NQO1) signaling pathway, and the expression levels of LC3II/LC3I, p-AMPK/AMPK, Beclin-1, Nrf2 and HO-1 proteins, which were alleviated by Se, indicated that Se inhibited Cd-induced autophagy and Nrf2 signaling pathway activation. In conclusion, our study found that Se antagonized Cd-induced oxidative stress and autophagy in the brain by generating crosstalk between AMPK and Nrf2 signaling pathway.


Assuntos
Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cádmio/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Selênio/farmacologia , Animais , Antioxidantes/uso terapêutico , Encéfalo/metabolismo , Encéfalo/patologia , Intoxicação por Cádmio/tratamento farmacológico , Intoxicação por Cádmio/patologia , Relação Dose-Resposta a Droga , Necrose , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Coelhos , Receptor Cross-Talk/efeitos dos fármacos , Selênio/uso terapêutico , Selenito de Sódio/farmacologia , Selenito de Sódio/uso terapêutico , Vacúolos/efeitos dos fármacos
3.
Trop Biomed ; 38(2): 40-47, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33973571

RESUMO

The reduced efficacy of the mainstay antimalarial drugs due to the widespread of drugresistant Plasmodium falciparum has necessitated efforts to discover new antimalarial drugs with new targets. Quercus infectoria (Olivier) has long been used to treat various ailments including fever. The acetone extract of the plant galls has recently been reported to have a promising antimalarial activity in vitro. This study was aimed to determine the effect of the Q. infectoria gall acetone crude extract on pH of the digestive vacuole of Plasmodium falciparum. A ratiometric fluorescent probe, fluorescein isothiocyanate-dextran (FITC-dextran) was used to facilitate a quantitative measurement of the digestive vacuole pH by flow cytometry. Mid trophozoite stage malaria parasites grown in resealed erythrocytes containing FITC-dextran were treated with different concentrations of the acetone extract based on the 50% inhibitory concentration (IC50). Saponin-permeabilized parasites were analyzed to obtain the ratio of green/yellow fluorescence intensity (Rgy) plotted as a function of pH in a pH calibration curve of FITC-dextran. Based on the pH calibration curve, the pH of the digestive vacuole of the acetone extract-treated parasites was significantly altered (pH values ranged from 6.35- 6.71) in a concentration-dependent manner compared to the untreated parasites (pH = 5.32) (p < 0.001). This study provides a valuable insight into the potential of the Q. infectoria galls as a promising antimalarial candidate with a novel mechanism of action.


Assuntos
Antimaláricos , Extratos Vegetais/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Quercus , Vacúolos/efeitos dos fármacos , Acetona , Antimaláricos/farmacologia , Concentração de Íons de Hidrogênio , Quercus/química , Vacúolos/química
4.
Toxins (Basel) ; 13(2)2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673235

RESUMO

We are investigating plant species from the Canadian prairie ecological zone by phenotypic cell assays to discover toxins of biological interest. We provide the first report of the effects of extracts prepared from the shrub Symphoricarpos occidentalis in several human cell lines. S. occidentalis (Caprifoliaceae) extracts are cytotoxic, and, strikingly, treated cells undergo light-dependent vacuolation near the nucleus. The range of irradiation is present in standard ambient light and lies in the visible range (400-700 nm). Vacuolization in treated cells can be induced with specific wavelengths of 408 or 660 nm at 1 J/cm2 energies. Vacuolated cells show a striking phenotype of a large perinuclear vacuole (nuclear associated vacuole, NAV) that is distinct from vesicles observed by treatment with an autophagy-inducing agent. Treatment with S. occidentalis extracts and light induces an intense lamin A/C signal at the junction of a nuclear vacuole and the nucleus. Further study of S. occidentalis extracts and vacuolation provide chemical tools that may contribute to the understanding of nuclear envelope organization and human cell biology.


Assuntos
Núcleo Celular/efeitos dos fármacos , Extratos Vegetais/toxicidade , Plantas Tóxicas/toxicidade , Symphoricarpos/toxicidade , Toxinas Biológicas/toxicidade , Vacúolos/efeitos dos fármacos , Células A549 , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Núcleo Celular/efeitos da radiação , Células HT29 , Humanos , Lamina Tipo A/metabolismo , Luz , Extratos Vegetais/isolamento & purificação , Toxinas Biológicas/isolamento & purificação , Vacúolos/metabolismo , Vacúolos/patologia , Vacúolos/efeitos da radiação
5.
Molecules ; 26(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668176

RESUMO

Colorectal cancer is a common cancer worldwide and reduced expression of the DNA repair endonuclease XPF (xeroderma pigmentosum complementation group F) is associated with colorectal cancer. Bacopa monnieri extracts were previously found to exhibit chemical-genetic synthetic lethal effects in a Saccharomyces cerevisiae model of colorectal cancer lacking Rad1p, a structural and functional homologue of human XPF. However, the mechanisms for B. monnieri extracts to limit proliferation and promote an apoptosis-like event in RAD1 deleted yeast was not elucidated. Our current analysis has revealed that B. monnieri extracts have the capacity to promote mutations in rad1∆ cells. In addition, the effects of B. monnieri extracts on rad1∆ yeast is linked to disruption of the vacuole, similar to the mammalian lysosome. The absence of RAD1 in yeast sensitizes cells to the effects of vacuole disruption and the release of proteases. The combined effect of increased DNA mutations and release of vacuolar contents appears to induce an apoptosis-like event that is dependent on the meta-caspase Yca1p. The toxicity of B. monnieri extracts is linked to sterol content, suggesting saponins may be involved in limiting the proliferation of yeast cells. Analysis of major constituents from B. monnieri identified a chemical-genetic interaction between bacopasaponin C and rad1∆ yeast. Bacopasaponin C may have potential as a drug candidate or serve as a model for the development of analogs for the treatment of colorectal cancer.


Assuntos
Bacopa/química , Enzimas Reparadoras do DNA/metabolismo , Endonucleases/metabolismo , Glicosídeos/farmacologia , Extratos Vegetais/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Triterpenos/farmacologia , Vacúolos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Enzimas Reparadoras do DNA/deficiência , Enzimas Reparadoras do DNA/genética , Endonucleases/deficiência , Endonucleases/genética , Glicosídeos/química , Extratos Vegetais/química , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Triterpenos/química , Vacúolos/metabolismo
6.
J Ethnopharmacol ; 266: 113446, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33031902

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hepatocellular carcinoma (HCC) is an aggressive malignancy with increasing mortality in China. Screening and identifying effective anticancer compounds from active traditional Chinese herbs for HCC are in demand. Akebia trifoliata (Thunb) Koidz, with pharmacological anti-HCC activities in clinical, has been shown in previous research. In the present research, we elucidated a potential anticancer effect of Akebia saponin E (ASE), which is isolated from the immature seeds of Akebia trifoliata (Thunb.) Koidz, and revealed that ASE could induce severe expanded vacuoles in HCC cells. But the potential mechanism of vacuole-formation and the anti-HCC effects by ASE remain uncover. AIM OF THIS STUDY: To elucidate the potential mechanism of vacuole-formation and the proliferation inhibition effects by ASE in HCC cell lines. MATERIALS AND METHODS: MTT assay, colony formation assay and flow cytometry were performed to detect cell viability. Immunofluorescence analysis was used to examine the biomarkers of endomembrane. Cells were infected with tandem mRFP-GFP-LC3 lentivirus to assess autophagy flux. RNA-seq was conducted to analyze the genome-wide transcriptional between treatment cell groups. In vitro PIKfyve kinase assay is detected by the ADP-GloTM Kinase Assay Kit. RESULTS: ASE could inhibit the proliferation of HCC with severe expanded vacuoles in vitro, and could significantly reduce the size and weight of xenograft tumor in vivo. Further, the vacuoles induced by ASE were aberrant enlarged lysosomes instead of autophagosome or autolysosomes. With cytoplasmic vacuolation, ASE induced a mTOR-independent TFEB activation for lysosomal biogenesis and a decrement of cholesterol levels in HCC cells. Furthermore, ASE could reduce the activity of PIKfyve (phosphoinositide kinase containing a FYVE-type finger), causing aberrant lysosomal biogenesis and cholesterol dyshomeostasis which triggered the expanded vacuole formation. CONCLUSION: ASE can prospectively inhibit the kinase activity of PIKfyve to induce lysosome-associated cytoplasmic vacuolation, and may be utilized as an alternative candidate to treat human HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Ranunculales/química , Saponinas/farmacologia , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase/isolamento & purificação , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Saponinas/isolamento & purificação , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Microbiol Biotechnol ; 30(12): 1835-1842, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33263334

RESUMO

Ergosterol, an essential constituent of membrane lipids of yeast, is distributed in both the cell membrane and intracellular endomembrane components such as vacuoles. Honokiol, a major polyphenol isolated from Magnolia officinalis, has been shown to inhibit the growth of Candida albicans. Here, we assessed the effect of honokiol on ergosterol biosynthesis and vacuole function in C. albicans. Honokiol could decrease the ergosterol content and upregulate the expression of genes related with the ergosterol biosynthesis pathway. The exogenous supply of ergosterol attenuated the toxicity of honokiol against C. albicans. Honokiol treatment could induce cytosolic acidification by blocking the activity of the plasma membrane Pma1p H+-ATPase. Furthermore, honokiol caused abnormalities in vacuole morphology and function. Concomitant ergosterol feeding to some extent restored the vacuolar morphology and the function of acidification in cells treated by honokiol. Honokiol also disrupted the intracellular calcium homeostasis. Amiodarone attenuated the antifungal effects of honokiol against C. albicans, probably due to the activation of the calcineurin signaling pathway which is involved in honokiol tolerance. In conclusion, this study demonstrated that honokiol could inhibit ergosterol biosynthesis and decrease Pma 1p H+-ATPase activity, which resulted in the abnormal pH in vacuole and cytosol.


Assuntos
Compostos de Bifenilo/farmacologia , Candida albicans/efeitos dos fármacos , Ergosterol/biossíntese , Lignanas/farmacologia , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Antifúngicos/farmacologia , Calcineurina/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Farmacorresistência Fúngica/efeitos dos fármacos , Ergosterol/genética , Magnolia/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia
8.
Int J Mol Sci ; 21(14)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664260

RESUMO

In contrast to the well-studied effect of auxin on the plasma membrane K+ channel activity, little is known about the role of this hormone in regulating the vacuolar K+ channels. Here, the patch-clamp technique was used to investigate the effect of auxin (IAA) on the fast-activating vacuolar (FV) channels. It was found that the macroscopic currents displayed instantaneous currents, which at the positive potentials were about three-fold greater compared to the one at the negative potentials. When auxin was added to the bath solution at a final concentration of 1 µM, it increased the outward currents by about 60%, but did not change the inward currents. The imposition of a ten-fold vacuole-to-cytosol KCl gradient stimulated the efflux of K+ from the vacuole into the cytosol and reduced the K+ current in the opposite direction. The addition of IAA to the bath solution with the 10/100 KCl gradient decreased the outward current and increased the inward current. Luminal auxin reduced both the outward and inward current by approximately 25% compared to the control. The single channel recordings demonstrated that cytosolic auxin changed the open probability of the FV channels at the positive voltages to a moderate extent, while it significantly increased the amplitudes of the single channel outward currents and the number of open channels. At the positive voltages, auxin did not change the unitary conductance of the single channels. We suggest that auxin regulates the activity of the fast-activating vacuolar (FV) channels, thereby causing changes of the K+ fluxes across the vacuolar membrane. This mechanism might serve to tightly adjust the volume of the vacuole during plant cell expansion.


Assuntos
Beta vulgaris/efeitos dos fármacos , Beta vulgaris/metabolismo , Ácidos Indolacéticos/farmacologia , Canais Iônicos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Transporte Biológico/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Potássio/metabolismo
9.
Ann Neurol ; 87(3): 480-485, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31925837

RESUMO

Marked elevation in the brain concentration of N-acetyl-L-aspartate (NAA) is a characteristic feature of Canavan disease, a vacuolar leukodystrophy resulting from deficiency of the oligodendroglial NAA-cleaving enzyme aspartoacylase. We now demonstrate that inhibiting NAA synthesis by intracisternal administration of a locked nucleic acid antisense oligonucleotide to young-adult aspartoacylase-deficient mice reverses their pre-existing ataxia and diminishes cerebellar and thalamic vacuolation and Purkinje cell dendritic atrophy. Ann Neurol 2020;87:480-485.


Assuntos
Ácido Aspártico/análogos & derivados , Doença de Canavan/tratamento farmacológico , Oligonucleotídeos Antissenso/uso terapêutico , Acetiltransferases/antagonistas & inibidores , Amidoidrolases/deficiência , Amidoidrolases/genética , Animais , Ácido Aspártico/biossíntese , Ataxia/complicações , Ataxia/tratamento farmacológico , Atrofia/complicações , Atrofia/tratamento farmacológico , Doença de Canavan/complicações , Doença de Canavan/patologia , Cerebelo/patologia , Feminino , Técnicas de Silenciamento de Genes , Infusões Intraventriculares , Masculino , Camundongos , Mutação , Oligonucleotídeos Antissenso/administração & dosagem , Células de Purkinje/patologia , Teste de Desempenho do Rota-Rod , Tálamo/patologia , Vacúolos/efeitos dos fármacos , Vacúolos/patologia
10.
J Biol Chem ; 294(46): 17626-17641, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31527081

RESUMO

Exposing cells to excess metal concentrations well beyond the cellular quota is a powerful tool for understanding the molecular mechanisms of metal homeostasis. Such improved understanding may enable bioengineering of organisms with improved nutrition and bioremediation capacity. We report here that Chlamydomonas reinhardtii can accumulate manganese (Mn) in proportion to extracellular supply, up to 30-fold greater than its typical quota and with remarkable tolerance. As visualized by X-ray fluorescence microscopy and nanoscale secondary ion MS (nanoSIMS), Mn largely co-localizes with phosphorus (P) and calcium (Ca), consistent with the Mn-accumulating site being an acidic vacuole, known as the acidocalcisome. Vacuolar Mn stores are accessible reserves that can be mobilized in Mn-deficient conditions to support algal growth. We noted that Mn accumulation depends on cellular polyphosphate (polyP) content, indicated by 1) a consistent failure of C. reinhardtii vtc1 mutant strains, which are deficient in polyphosphate synthesis, to accumulate Mn and 2) a drastic reduction of the Mn storage capacity in P-deficient cells. Rather surprisingly, X-ray absorption spectroscopy, EPR, and electron nuclear double resonance revealed that only little Mn2+ is stably complexed with polyP, indicating that polyP is not the final Mn ligand. We propose that polyPs are a critical component of Mn accumulation in Chlamydomonas by driving Mn relocation from the cytosol to acidocalcisomes. Within these structures, polyP may, in turn, escort vacuolar Mn to a number of storage ligands, including phosphate and phytate, and other, yet unidentified, compounds.


Assuntos
Chlamydomonas/metabolismo , Íons/metabolismo , Manganês/metabolismo , Vacúolos/efeitos dos fármacos , Cálcio/metabolismo , Chlamydomonas/efeitos dos fármacos , Íons/química , Manganês/toxicidade , Fósforo/metabolismo , Vacúolos/metabolismo , Espectroscopia por Absorção de Raios X
11.
Biomed Pharmacother ; 118: 109203, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31306970

RESUMO

According to its different occurrence mechanism, programmed cell death (PCD) is divided into apoptosis, autophagy, necrosis, paraptosis and so on. Paraptosis is morphologically different from apoptosis and autophagy, which exhibit cytoplasmic vacuolation derived from the ER, independent of caspase, absence of apoptotic morphology. Recent researches have implied that a variety of small molecule compounds, such as celastrol, curcumin, can induce paraptosis-associated cell death as the reagent to enhance anti-cancer activity. A better understanding of paraptosis will lay the foundation to develop new therapeutic strategies to treat human cancers that make full use of small-molecule compounds.


Assuntos
Produtos Biológicos/farmacologia , Neoplasias/tratamento farmacológico , Morte Celular Regulada/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Produtos Biológicos/química , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Biossíntese de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
12.
Plant Physiol ; 180(1): 480-496, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30737267

RESUMO

Many signal perception mechanisms are connected to Ca2+-based second messenger signaling to modulate specific cellular responses. The well-characterized plant hormone auxin elicits a very rapid Ca2+ signal. However, the cellular targets of auxin-induced Ca2+ are largely unknown. Here, we screened a biologically annotated chemical library for inhibitors of auxin-induced Ca2+ entry in plant cell suspensions to better understand the molecular mechanism of auxin-induced Ca2+ and to explore the physiological relevance of Ca2+ in auxin signal transduction. Using this approach, we defined a set of diverse, small molecules that interfere with auxin-induced Ca2+ entry. Based on annotated biological activities of the hit molecules, we found that auxin-induced Ca2+ signaling is, among others, highly sensitive to disruption of membrane proton gradients and the mammalian Ca2+ channel inhibitor bepridil. Whereas protonophores nonselectively inhibited auxin-induced and osmotic stress-induced Ca2+ signals, bepridil specifically inhibited auxin-induced Ca2+ We found evidence that bepridil severely alters vacuolar morphology and antagonized auxin-induced vacuolar remodeling. Further exploration of this plant-tailored collection of inhibitors will lead to a better understanding of auxin-induced Ca2+ entry and its relevance for auxin responses.


Assuntos
Arabidopsis/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Nicotiana/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Ácido 2,4-Diclorofenoxiacético/farmacologia , Arabidopsis/genética , Proteínas de Bactérias/genética , Bepridil/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/fisiologia , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Fenamatos/farmacologia , Ácidos Indolacéticos/antagonistas & inibidores , Medições Luminescentes , Proteínas Luminescentes/genética , Niclosamida/farmacologia , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas , Nicotiana/genética , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
13.
Nat Prod Res ; 33(12): 1769-1772, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29390916

RESUMO

Astrocytic tumour cells derived from human (GL-15) and rat (C6) gliomas, as well as non-tumoural astrocytic cells, were exposed to the saponin-rich fraction (SF) from Agave sisalana waste and the cytotoxic effects were evaluated. Cytotoxicity assays revealed a reduction of cell viability that was more intensive in glioma than in non-tumoural cells. The SF induced morphological changes in C6 cells. They were characterised by cytoplasmic vacuole formation associated with increase in the formation of acidic lysosomes. The SF was subjected to purification on Sephadex LH-20, which characterised three probable steroidal saponins (sisalins) by electrospray ionisation mass spectrometry multistage (ESI-MSn). Sisalins from sisal may be responsible for the cytotoxicity, which involves cytoplasmatic vacuole formation and selective action for glioma cells.


Assuntos
Agave/química , Antineoplásicos Fitogênicos/farmacologia , Astrócitos/efeitos dos fármacos , Saponinas/química , Saponinas/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Astrócitos/patologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Citoplasma/efeitos dos fármacos , Citoplasma/patologia , Glioma/patologia , Humanos , Estrutura Molecular , Extratos Vegetais/química , Ratos , Saponinas/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem , Vacúolos/efeitos dos fármacos , Vacúolos/patologia , Células Vero
14.
PLoS One ; 13(8): e0201747, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30071097

RESUMO

Leishmania parasites cause a set of neglected tropical diseases with considerable public health impact, the leishmaniases, which are often fatal if left untreated. Since current treatments for the leishmaniases exhibit high toxicity, low efficacy and prohibitive prices, many laboratories throughout the world are engaged in research for the discovery of novel chemotherapeutics. This entails the necessity of screening large numbers of compounds against the clinically relevant form of the parasite, the obligatory intracellular amastigote, a procedure that in many laboratories is still carried out by manual inspection. To overcome this well-known bottleneck in Leishmania drug development, several studies have recently attempted to automate this process. Here we implemented an image-based high content triage assay for Leishmania which has the added advantages of using primary macrophages instead of macrophage cell lines and of enabling identification of active compounds against parasite species developing both in small individual phagolysosomes (such as L. infantum) and in large communal vacuoles (such as L. amazonensis). The automated image analysis protocol is made available for IN Cell Analyzer systems, and, importantly, also for the open-source CellProfiler software, in this way extending its implementation to any laboratory involved in drug development as well as in other aspects of Leishmania research requiring analysis of in vitro infected macrophages.


Assuntos
Leishmania/citologia , Leishmaniose/diagnóstico por imagem , Macrófagos/parasitologia , Microscopia , Reconhecimento Automatizado de Padrão/métodos , Anfotericina B/farmacologia , Animais , Antiprotozoários/farmacologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Fêmur , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos Endogâmicos BALB C , Microscopia/métodos , Fagossomos/efeitos dos fármacos , Fagossomos/parasitologia , Fagossomos/patologia , Software , Tíbia , Vacúolos/efeitos dos fármacos , Vacúolos/parasitologia , Vacúolos/patologia
15.
Toxicol Pathol ; 46(6): 616-635, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30092727

RESUMO

Colorless, intracytoplasmic vacuoles occur in multiple tissues in animals following repeated administration of polyethylene glycol (PEG)-conjugated molecules. The extent of vacuolation depends on physical characteristics and molecular backbone of the PEG and the dose, product, drug target/pharmacology, and duration of exposure. The collective experience gathered from multiple nonclinical toxicology studies of PEGylated biopharmaceuticals indicates that in general, PEG-related vacuolation is not associated with demonstrable cell and tissue damage or dysfunction and is reversible with sufficient duration of drug-free periods. Existing data are insufficient to predict whether nonclinical animal species differ in their sensitivity to develop PEG-associated vacuoles; however, recent data suggest that there may be species differences. Recent comprehensive reviews have addressed the basic challenges in developing PEGylated pharmaceutical products, including general reference to and description of PEG-associated tissue findings. These manuscripts have identified gaps in our current understanding of PEG-associated vacuolation, including the lack of a widely accepted standardized histological terminology and criteria to record and grade the severity of vacuolation as well as insufficient knowledge regarding the nature of the contents of these vacuoles. The goal of this article is to help address some of the gaps identified above by providing points to consider, including a pictorial review of PEG-associated microscopic findings, when evaluating and reporting the extent, severity, and significance (adversity or lack of adversity) of PEG-associated cytoplasmic vacuolation in safety assessment studies. [Box: see text].


Assuntos
Qualidade de Produtos para o Consumidor/normas , Avaliação Pré-Clínica de Medicamentos/normas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Preparações Farmacêuticas/química , Formulação de Políticas , Polietilenoglicóis/toxicidade , Vacúolos/ultraestrutura , Animais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Especificidade de Órgãos , Preparações Farmacêuticas/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Distribuição Tecidual , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
16.
Mol Oncol ; 12(7): 1203-1215, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29791786

RESUMO

Matrine is a natural compound extracted from the herb Sophora flavescens Ait which is widely used in traditional Chinese medicine for treating various diseases. Recently, matrine was reported to have antitumor effects against a variety of cancers without any obvious side effects; however, the molecular mechanisms of its antiproliferative effects on cancer are unclear. Here, we report that matrine inhibits autophagy-mediated energy metabolism, which is necessary for pancreatic cancer growth. We found that matrine significantly reduces pancreatic cancer growth in vitro and in vivo by insufficiently maintaining mitochondrial metabolic function and energy level. We also found that either pyruvate or α-ketoglutarate supplementation markedly rescues pancreatic cancer cell growth following matrine treatment. Inhibition of mitochondrial energy production results from matrine-mediated autophagy inhibition by impairing the function of lysosomal protease. Matrine-mediated autophagy inhibition requires stat3 downregulation. Furthermore, we found that the antitumor effect of matrine on pancreatic cancer growth depends on the mutation of the KRAS oncogene. Together, our data suggest that matrine can suppress the growth of KRAS-mutant pancreatic cancer by inhibiting autophagy-mediated energy metabolism.


Assuntos
Alcaloides/farmacologia , Autofagia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinolizinas/farmacologia , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Catepsinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Mutação/genética , Peptídeo Hidrolases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Fator de Transcrição STAT3/metabolismo , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Vacúolos/ultraestrutura , Matrinas
17.
Cell Death Dis ; 9(6): 646, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844385

RESUMO

Hepatocellular carcinoma is one of most common solid cancers worldwide. Sorafenib is indicated as a treatment for advanced hepatocellular carcinoma (HCC). However, the clinical efficacy of sorafenib has been severely compromised by the development of drug resistance, and the precise mechanisms of drug resistance remain largely unknown. Here we found that a cell surface molecule, CD24, is overexpressed in tumor tissues and sorafenib-resistant hepatocellular carcinoma cell lines. Moreover, there is a positive correlation between CD24 expression levels and sorafenib resistance. In sorafenib-resistant HCC cell lines, depletion of CD24 caused a notable increase of sorafenib sensitivity. In addition, we found that CD24-related sorafenib resistance was accompanied by the activation of autophagy and can be blocked by the inhibition of autophagy using either pharmacological inhibitors or essential autophagy gene knockdown. In further research, we found that CD24 overexpression also leads to an increase in PP2A protein production and induces the deactivation of the mTOR/AKT pathway, which enhances the level of autophagy. These results demonstrate that CD24 regulates sorafenib resistance via activating autophagy in HCC. This is the first report to describe the relationships among CD24, autophagy, and sorafenib resistance. In conclusion, the combination of autophagy modulation and CD24 targeted therapy is a promising therapeutic strategy in the treatment of HCC.


Assuntos
Autofagia , Antígeno CD24/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas/tratamento farmacológico , Sorafenibe/uso terapêutico , Animais , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos Nus , Prognóstico , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Sorafenibe/farmacologia , Serina-Treonina Quinases TOR , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Vacúolos/ultraestrutura
18.
Toxicol In Vitro ; 47: 129-136, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29174024

RESUMO

The use of natural products in therapeutics has been growing over the years. Lignans are compounds with large pharmaceutical use, which has aroused interest in the search for new drugs to treat diseases. The present study evaluated the cytotoxicity of (-)-trachelogenin, a dibenzylbutyrolactone type lignan isolated from Combretum fruticosum, against several tumor and non-tumor cell lines using the MTT assay and its possible mechanism of action. (-)-Trachelogenin showed IC50 values ranging of 0.8-32.4µM in SF-295 and HL-60 cell lines, respectively and IC50 values >64µM in non-tumor cell lines. (-)-trachelogenin persistently induced autophagic cell death, with cytoplasmic vacuolization and formation of autophagosomes mediated by increasing LC3 activation and altering the expression levels of Beclin-1.


Assuntos
4-Butirolactona/análogos & derivados , Antineoplásicos Fitogênicos/farmacologia , Autofagia/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Combretum/química , Descoberta de Drogas , Caules de Planta/química , 4-Butirolactona/efeitos adversos , 4-Butirolactona/química , 4-Butirolactona/isolamento & purificação , 4-Butirolactona/farmacologia , Antineoplásicos Fitogênicos/efeitos adversos , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Autofagossomos/efeitos dos fármacos , Autofagossomos/patologia , Proteína Beclina-1/agonistas , Proteína Beclina-1/metabolismo , Brasil , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/patologia , Combretum/crescimento & desenvolvimento , Etnofarmacologia , Células HCT116 , Humanos , Concentração Inibidora 50 , Medicina Tradicional , Proteínas Associadas aos Microtúbulos/agonistas , Proteínas Associadas aos Microtúbulos/metabolismo , Estrutura Molecular , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/metabolismo , Caules de Planta/crescimento & desenvolvimento , Vacúolos/efeitos dos fármacos , Vacúolos/patologia
19.
Int J Mol Med ; 41(3): 1305-1314, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29286074

RESUMO

Despite its favorable clinical efficacy, oxaliplatin­based chemotherapy frequently results in treatment withdrawal and induces liver damage in colon cancer. Therefore, it is important to develop novel drugs, which can safely and effectively complement or replace the therapeutic effects of oxaliplatin. Codonopis bulleynana Forest ex Diels (cbFeD) has wide range of pharmacological effects, including anticancer effects. In the present study, the anticancer activity of cbFeD and its potential molecular mechanisms were investigated. In vitro, cell counting kit­8 assays and flow cytometry were used to assess the anti­proliferation and apoptosis­promoting activities of cbFeD. Transmission electron microscopy was used to monitor the autophagic vesicles. Immunofluorescence staining was performed to observe the nuclear translocation of p65 and the fluorescence of microtubule­associated protein 1 light chain 3 (LC3) B­II. The protein expression levels of p65, inhibitor of nuclear factor (NF)­κB (IκB) a, LC3B­I, LC3B­II and Beclin­1 were detected using western blot analysis. In vivo, the antitumor effect of cbFeD was assessed in colon cancer­bearing nude mice as a model. H&E staining and immunohistochemistry (IHC) were performed, with oxaliplatin set as a positive control. The results showed that cbFeD inhibited cell proliferation and promoted cell apoptosis in a dose­dependent manner. The effects of a high dose of cbFeD on colon cancer cells were similar to those of oxaliplatin. In HCT116 and SW480 cells, cbFeD inhibited the expression of IκBα, LC3B­I/II and Beclin­1, and the results of western blot analysis and immunofluorescence showed that, in the cells treated with cbFeD, p65 gradually entered nuclei in a dose­dependent manner, and the expression of LC3B­II was gradually reduced. The results of the acridine orangestaining and electron microscopy demonstrated fewer autophagic vesicles in the high­dose cbFeD group and the oxaliplatin group. The high dose of cbFeD reversed the effect of pyrrolidine dithiocarbamate, a p65­inhibitor, on the expression of p65, LC3B­I, LC3B­II and Beclin­1, and on the production of autophagic vacuoles. The high dose of cbFeD and oxaliplatin also suppressed tumorigenicity in vivo. The results of the H&E and IHC staining confirmed the inhibition of autophagy (LC3 and Beclin­1) and activation of p65 by treatment with the high dose of cbFeD and oxaliplatin. Taken together, cbFeD exhibited an antitumor effect in colon cancer cells by inhibiting autophagy through activation of the NF­κB pathway. Therefore, cbFeD may be a promising Chinese herbal compound for development for use in cancer therapy.


Assuntos
Apoptose , Autofagia , Codonopsis/química , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Extratos Vegetais/farmacologia , Transdução de Sinais , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Pirrolidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tiocarbamatos/farmacologia , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
20.
J Agric Food Chem ; 65(31): 6625-6637, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28697598

RESUMO

Downregulation of apoptotic signal pathway and activation of protective autophagy mainly contribute to the chemoresistance of tumor cells. Therefore, exploring efficient chemotherapeutic agents or isolating novel natural products that can trigger nonapoptotic and nonautophagic cell death such as lysosome-associated death is emergently required. We have recently extracted a saponin, gypenoside L (Gyp-L), from Gynostemma pentaphyllum and showed that Gyp-L was able to induce nonapoptotic cell death of esophageal cancer cells associated with lysosome swelling. However, contributions of vacuolization and lysosome to cell death remain unclear. Herein, we reveal a critical role for NADPH oxidase NOX2-mediated vacuolization and transcription factor EB (TFEB) activation in lysosome-associated cell death. We found that Gyp-L initially induced the abnormal enlarged and alkalized vacuoles, which were derived from lipid rafts dependent endocytosis. Besides, NOX2 was activated to promote vacuolization and mTORC1-independent TFEB-mediated lysosome biogenesis. Finally, raising lysosome pH could enhance Gyp-L induced cell death. These findings suggest a protective role of NOX2-TFEB-mediated lysosome biogenesis in cancer drug resistance and the tight interaction between lipid rafts and vacuolization. In addition, Gyp-L can be utilized as an alternative option to overcome drug-resistance though inducing lysosome associated cell death.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Morte Celular/efeitos dos fármacos , Gynostemma/química , Lisossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Extratos Vegetais/farmacologia , Vacúolos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Lisossomos/efeitos dos fármacos , Glicoproteínas de Membrana/genética , NADPH Oxidase 2 , NADPH Oxidases/genética , Vacúolos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA