Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 370
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Food Funct ; 12(21): 10903-10916, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34647113

RESUMO

The aim of this study was to explore the molecular mechanism of enhancing the immune effect of the Newcastle disease virus (NDV) vaccine in broilers fed with Bacillus cereus PAS38. The results showed that the NDV antibody titer of broilers in the treatment group supplemented with B. cereus PAS38 was higher than that of the control group, and the difference was significant at 28 days of age (P < 0.05). The spleen, thymus and bursa of fabricius of 42-day-old broilers were quickly collected to construct a differentially expressed gene library of suppression subtractive hybridization (SSH). A total of 31 immune-related differentially expressed genes were screened from three immune organs, of which 15 were up-regulated and 16 were down-regulated. After silencing the up-regulated genes MIF, CD74, DOCK2 and KLHL6, the expression levels of cytokines (Akirin2, NF-κB, IL-2, IL-4, IL-6, IFN-γ and TNF-α) in lymphocytes were reduced to varying degrees. B. cereus PAS38 might be involved in the proliferation, differentiation, activation, migration of B lymphocytes and vaccine antigen presentation by up-regulating the expression of MIF, CD74, DOCK2, KLHL6 and other genes. Moreover, it also stimulated plasma cells to produce immunoglobulins and specific antibodies, thereby improving the humoral immune function of broilers and enhancing the immune effect of the NDV vaccine.


Assuntos
Bacillus cereus/fisiologia , Galinhas , Doença de Newcastle/prevenção & controle , Vírus da Doença de Newcastle/imunologia , Probióticos/farmacologia , Vacinas Virais/imunologia , Ração Animal/análise , Animais , Suplementos Nutricionais
2.
Int Immunopharmacol ; 96: 107763, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34162141

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the rapidly spreading pandemic COVID-19 in the world. As an effective therapeutic strategy is not introduced yet and the rapid genetic variations in the virus, there is an emerging necessity to design, evaluate and apply effective new vaccines. An acceptable vaccine must elicit both humoral and cellular immune responses, must have the least side effects and the storage and transport systems should be available and affordable for all countries. These vaccines can be classified into different types: inactivated vaccines, live-attenuated virus vaccines, subunit vaccines, virus-like particles (VLPs), nucleic acid-based vaccines (DNA and RNA) and recombinant vector-based vaccines (replicating and non-replicating viral vector). According to the latest update of the WHO report on April 2nd, 2021, at least 85 vaccine candidates were being studied in clinical trial phases and 184 candidate vaccines were being evaluated in pre-clinical stages. In addition, studies have shown that other vaccines, including the Bacillus Calmette-Guérin (BCG) vaccine and the Plant-derived vaccine, may play a role in controlling pandemic COVID-19. Herein, we reviewed the different types of COVID-19 candidate vaccines that are currently being evaluated in preclinical and clinical trial phases along with advantages, disadvantages or adverse reactions, if any.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Vacina BCG/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/efeitos adversos , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Masculino , Metanálise como Assunto , Pessoa de Meia-Idade , Vacinas de DNA/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/imunologia
3.
Res Vet Sci ; 138: 148-160, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34144282

RESUMO

The objective of this randomized, placebo-controlled, double-blinded field trial was to investigate the effects of oral administration of purple coneflower (Echinacea purpurea L. (EP)) on performance, health and immune parameters in calves. Calves (n = 27) were enrolled to three groups (9 calves per group): 0.5 g EP/calf per day (ECL), 5 g EP/calf per day (ECH) or placebo. Calves were vaccinated with Bluetongue-Virus (BTV) serotype 4 vaccine to investigate EPs effects on seroconversion. Clinical and performance parameters, inter alia body weight, health and milk intake were recorded for 57 days. Blood samples were analyzed for BTV antibodies and IgG by ELISA, white and red blood cell counts by flow cytometry and mRNA abundance of various inflammatory markers in leukocytes (IL-1ß, IL-8, tumor necrosis factor α (TNFα), cyclooxygenase 2 (Cox-2) and prostaglandin E synthase) was studied. The findings demonstrated no differences between groups regarding performance parameters. In all groups, calves suffered from diarrhea for a minimum of 2 days, but EP reduced the number of diarrhea days by 44% in ECL and increased the body temperature. Interestingly, ECL resulted in an increased number of respiratory disease days during the follow-up period. EP did not change blood cell and IgG counts, whereas eosinophil granulocytes were reduced in ECL. Decreased levels of hemoglobin and hematocrit were found in ECH. Prostaglandin E synthase levels in leukocytes were higher in ECL and ECH, whereas no differences were obtained for IL-1ß, IL-8, TNFα and Cox-2. Due to the unexpected occurrence of BTV seropositive calves before the first vaccination, 13 calves were excluded from the evaluation on seroconversion and no statistical analyses could be performed regarding antibody production. BTV-4 antibodies were not produced in 4 placebo-calves, whereas 4 of 5 and 1 of 6 ECL- and ECH-calves produced antibodies. Further investigations are needed to draw final conclusions on mode of action and efficacy of EP in calves.


Assuntos
Vírus Bluetongue/imunologia , Bovinos/fisiologia , Echinacea/química , Extratos Vegetais/administração & dosagem , Vacinação/veterinária , Vacinas Virais/imunologia , Animais , Bovinos/crescimento & desenvolvimento , Bovinos/imunologia , Método Duplo-Cego , Feminino , Masculino , Extratos Vegetais/química , Soroconversão
4.
Trop Biomed ; 38(1): 154-159, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33797540

RESUMO

Despite the widespread use of the conventional inactivated foot-and-mouth disease (FMD) vaccine, its immunogenicity is poor and the duration of its protection is short. In this study, humoral response to commercial ready-to-use MontanideTM ISA 201 VG and MontanideTM ISA 61 VG oil adjuvants and a common adjuvant MontanideTM ISA 206 VG developed by Seppic Inc., were evaluated for FMD antigens in sheep and double oil emulsion (w/o/w) formulations of MontanideTM ISA 201 and 206 and single oil emulsion (w/o) of MontanideTM ISA 61 have been prepared by using current FMDV antigens (O/TUR/07, A/ASIA/G-VII, A/TUR/16 and ASIA/ TUR/15). The animals (n=48) were vaccinated subcutaneously with formulations and five sheep were maintained as an unvaccinated control group. Blood samples were taken at day 0, 7, 14, 21, 28, 60, 90, 120 and 150. Virus neutralization and liquid phase blocking ELISA tests were used to compare antibody response to vaccines prepared by using different MontanideTM mineral oils. The results showed that vaccines prepared by using MontanideTM ISA 61 and 201 gave better antibody response to FMD antigens than MontanideTM ISA 206 formulation, although results were not statistically significant for certain days of sampling. Moreover, the overall type O antibody response of MontanideTM ISA 201 was found to be superior to MontanideTM ISA 61.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Formação de Anticorpos , Febre Aftosa/prevenção & controle , Ovinos/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Ensaio de Imunoadsorção Enzimática/veterinária , Febre Aftosa/imunologia , Masculino , Testes de Neutralização/veterinária
5.
J Inorg Biochem ; 219: 111454, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33878530

RESUMO

In recent years, some viruses have caused a grave crisis to global public health, especially the human coronavirus. A truly effective vaccine is therefore urgently needed. Vaccines should generally have two features: delivering antigens and modulating immunity. Adjuvants have an unshakable position in the battle against the virus. In addition to the perennial use of aluminium adjuvant, nanoparticles have become the developing adjuvant candidates due to their unique properties. Here we introduce several typical nanoparticles and their antivirus vaccine adjuvant applications. Finally, for the combating of the coronavirus, we propose several design points, hoping to provide ideas for the development of personalized vaccines and adjuvants and accelerate the clinical application of adjuvants.


Assuntos
Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Nanopartículas/química , Vacinas Virais/imunologia , Alumínio/química , Anticorpos Neutralizantes/efeitos dos fármacos , Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/farmacologia , Fosfatos de Cálcio/química , Quitosana/química , Ouro/química , Humanos , Nanopartículas/administração & dosagem , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Vacinas Virais/química
6.
Sci Rep ; 11(1): 1864, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479388

RESUMO

The ferret is a key animal model for investigating the pathogenicity and transmissibility of important human viruses, and for the pre-clinical assessment of vaccines. However, relatively little is known about the ferret immune system, due in part to a paucity of ferret-reactive reagents. In particular, T follicular helper (Tfh) cells are critical in the generation of effective humoral responses in humans, mice and other animal models but to date it has not been possible to identify Tfh in ferrets. Here, we describe the screening and development of ferret-reactive BCL6, CXCR5 and PD-1 monoclonal antibodies. We found two commercial anti-BCL6 antibodies (clone K112-91 and clone IG191E/A8) had cross-reactivity with lymph node cells from influenza-infected ferrets. We next developed two murine monoclonal antibodies against ferret CXCR5 (clone feX5-C05) and PD-1 (clone fePD-CL1) using a single B cell PCR-based method. We were able to clearly identify Tfh cells in lymph nodes from influenza infected ferrets using these antibodies. The development of ferret Tfh marker antibodies and the identification of ferret Tfh cells will assist the evaluation of vaccine-induced Tfh responses in the ferret model and the design of novel vaccines against the infection of influenza and other viruses, including SARS-CoV2.


Assuntos
Anticorpos Monoclonais/imunologia , Furões/imunologia , Ensaios de Triagem em Larga Escala/métodos , Células T Auxiliares Foliculares/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Vacinas contra COVID-19/imunologia , Reações Cruzadas/imunologia , Humanos , Vacinas contra Influenza/imunologia , Linfonodos/imunologia , Camundongos , Receptor de Morte Celular Programada 1/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/imunologia , Receptores CXCR5/imunologia , Vacinas Virais/imunologia
7.
Viruses ; 14(1)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062210

RESUMO

Porcine epidemic diarrhea (PED) induced by porcine epidemic diarrhea virus (PEDV) is an intestinal infectious disease in pigs that causes serious economic losses to the pig industry. To develop an effective oral vaccine against PEDV infection, we used a swine-origin Lactobacillus johnsonii (L. johnsonii) as an antigen delivery carrier. A recombinant strain pPG-T7g10-COE/L. johnsonii (L. johnsonii-COE) expressing COE protein (a neutralizing epitope of the viral spike protein) was generated. The immunomodulatory effect on dendritic cell in vitro and immunogenicity in pregnant sows was evaluated following oral administration. L. johnsonii-COE could activate monocyte-derived dendritic cell (MoDC) maturation and triggered cell immune responses. After oral vaccination with L. johnsonii-COE, levels of anti-PEDV-specific serum IgG, IgA, and IgM antibodies as well as mucosal secretory immunoglobulin A (SIgA) antibody were induced in pregnant sows. High levels of PEDV-specific SIgA and IgG antibodies were detected in the maternal milk, which provide effective protection for the piglets against PEDV infection. In summary, oral L. johnsonii-COE was able to efficiently activate anti-PEDV humoral and cellular immune responses, demonstrating potential as a vaccine for use in sows to provide protection of their piglets against PEDV.


Assuntos
Anticorpos Antivirais/análise , Infecções por Coronavirus/veterinária , Imunidade Materno-Adquirida , Lactobacillus johnsonii/imunologia , Vírus da Diarreia Epidêmica Suína/imunologia , Doenças dos Suínos/prevenção & controle , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Linfócitos T CD4-Positivos/imunologia , Colostro/imunologia , Infecções por Coronavirus/prevenção & controle , Citocinas/sangue , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/imunologia , Epitopos , Feminino , Imunoglobulina A Secretora/análise , Imunoglobulina G/análise , Lactobacillus johnsonii/genética , Gravidez , Proteínas Recombinantes de Fusão/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Suínos , Células Th1/imunologia , Vacinas Sintéticas/imunologia
8.
Viruses ; 12(12)2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266129

RESUMO

The emergence and rapid spread of Zika virus (ZIKV) on a global scale as well as the establishment of a causal link between Zika infection and congenital syndrome and neurological disorders triggered unprecedented efforts towards the development of a safe and effective Zika vaccine. Multiple vaccine platforms, including purified inactivated virus, nucleic acid vaccines, live-attenuated vaccines, and viral-vectored vaccines, have advanced to human clinical trials. In this review, we discuss the recent advances in the field of Zika vaccine development and the challenges for future clinical efficacy trials. We provide a brief overview on Zika vaccine platforms in the pipeline before summarizing the vaccine candidates in clinical trials, with a focus on recent, promising results from vaccine candidates that completed phase I trials. Despite low levels of transmission during recent years, ZIKV has become endemic in the Americas and the potential of large Zika outbreaks remains real. It is important for vaccine developers to continue developing their Zika vaccines, so that a potential vaccine is ready for deployment and clinical efficacy trials when the next ZIKV outbreak occurs.


Assuntos
Vacinas Virais/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia , Zika virus/imunologia , Ensaios Clínicos como Assunto , Surtos de Doenças , Avaliação Pré-Clínica de Medicamentos , Saúde Global , Humanos , Avaliação de Resultados em Cuidados de Saúde , Vigilância em Saúde Pública , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/imunologia , Vacinologia/métodos , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/prevenção & controle
9.
BMC Vet Res ; 16(1): 427, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33160337

RESUMO

BACKGROUND: H9N2 Low pathogenic avian influenza virus (LPAIV) raises public health concerns and its eradication in poultry becomes even more important in preventing influenza. AJSAF is a purified active saponin fraction from the stem bark of Albizzia julibrissin. In this study, AJSAF was evaluated for the adjuvant potentials on immune responses to inactivated H9N2 avian influenza virus vaccine (IH9V) in mice and chicken in comparison with commercially oil-adjuvant. RESULTS: AJSAF significantly induced faster and higher H9 subtype avian influenza virus antigen (H9-Ag)-specific IgG, IgG1, IgG2a and IgG2b antibody titers in mice and haemagglutination inhibition (HI) and IgY antibody levels in chicken immunized with IH9V. AJSAF also markedly promoted Con A-, LPS- and H9-Ag-stimulated splenocyte proliferation and natural killer cell activity. Furthermore, AJSAF significantly induced the production of both Th1 (IL-2 and IFN-γ) and Th2 (IL-10) cytokines, and up-regulated the mRNA expression levels of Th1 and Th2 cytokines and transcription factors in splenocytes from the IH9V-immunized mice. Although oil-formulated inactivated H9N2 avian influenza vaccine (CH9V) also elicited higher H9-Ag-specific IgG and IgG1 in mice and HI antibody titer in chicken, this robust humoral response was later produced. Moreover, serum IgG2a and IgG2b antibody titers in CH9V-immunized mice were significantly lower than those of IH9V alone group. CONCLUSIONS: AJSAF could improve antigen-specific humoral and cellular immune responses, and simultaneously trigger a Th1/Th2 response to IH9V. AJSAF might be a safe and efficacious adjuvant candidate for H9N2 avian influenza vaccine.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Albizzia/química , Vírus da Influenza A Subtipo H9N2/imunologia , Influenza Aviária/prevenção & controle , Saponinas/administração & dosagem , Animais , Galinhas , Feminino , Imunidade , Imunogenicidade da Vacina , Influenza Aviária/imunologia , Camundongos Endogâmicos ICR , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Extratos Vegetais/administração & dosagem , Extratos Vegetais/imunologia , Saponinas/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
10.
Poult Sci ; 99(10): 4795-4803, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32988514

RESUMO

Vaccination is an effective method to prevent Newcastle disease (ND) in chickens. Marcol 52 and #10 white oil are mineral-based adjuvants and can be found in commercial inactivated ND virus vaccines. The present study demonstrated that a vegetable origin oil E515-D had lower polycyclic aromatic hydrocarbons and higher flash point than the commercial products Marcol 52 and #10 white oil. E515-D could be mixed with an aqueous phase containing ND virus antigen to form a stable water-in-oil vaccine emulsion and exhibited more potent adjuvant effects on the immune response than Marcol 52 and #10 white oil. Moreover, the absorption of E515-D-adjuvanted vaccine was faster than absorption of Marcol 52- and #10 white oil-adjuvanted vaccines when ND virus vaccines were injected in broilers. Therefore, E515-D was safe and could be a suitable adjuvant used in vaccines for food animals. In addition,E515-D is not easy to be flammable during shipping and storage owing to its higher flash point.


Assuntos
Adjuvantes Imunológicos , Doença de Newcastle , Vírus da Doença de Newcastle , Panax , Saponinas , Óleo de Girassol , Vacinas Virais , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/normas , Animais , Galinhas/imunologia , Doença de Newcastle/prevenção & controle , Vírus da Doença de Newcastle/imunologia , Panax/química , Folhas de Planta/química , Saponinas/imunologia , Saponinas/farmacologia , Óleo de Girassol/química , Vacinas Virais/química , Vacinas Virais/imunologia , Vacinas Virais/normas
11.
J Infect Public Health ; 13(11): 1611-1618, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32888871

RESUMO

After the outbreak of severe acute respiratory syndrome (SARS) in November 2002, coronaviruses (CoVs) received worldwide attention. On December 1, 2019, the first case of coronavirus disease 2019 (COVID-19), caused by a novel coronavirus (SARS-CoV-2), was reported in Wuhan, China, and CoVs returned to public view. On January 30, 2020, the World Health Organization (WHO) declared that the COVID-19 epidemic is a public health emergency of international concern (PHEIC), and on March 11, 2020, the WHO classified COVID-19 as a pandemic disease. As of July 31, 2020, COVID-19 has affected 216 countries and regions, with 17,064,064 confirmed cases and 668,073 deaths, and the number of new cases has been increasing daily. Additionally, on March 19, 2020, there were no new confirmed cases in China, providing hope and valuable experience for the international community. In this review, we systematically compare COVID-19 and SARS in terms of epidemiology, pathogenesis and clinical characteristics and discuss the current treatment approaches, scientific advancements and Chinese experience in fighting the epidemic to combat the novel coronavirus pandemic. We also discuss the lessons that we have learned from COVID-19 and SARS.


Assuntos
Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Saúde Pública , Síndrome Respiratória Aguda Grave/epidemiologia , Betacoronavirus , COVID-19 , Vacinas contra COVID-19 , China/epidemiologia , Ensaios Clínicos como Assunto , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Humanos , Medicina Tradicional Chinesa , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/transmissão , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Síndrome Respiratória Aguda Grave/transmissão , Vacinas Virais/imunologia , Organização Mundial da Saúde
12.
J Immunol Res ; 2020: 8624963, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802896

RESUMO

Single-cell RNA sequencing allows highly detailed profiling of cellular immune responses from limited-volume samples, advancing prospects of a new era of systems immunology. The power of single-cell RNA sequencing offers various opportunities to decipher the immune response to infectious diseases and vaccines. Here, we describe the potential uses of single-cell RNA sequencing methods in prophylactic vaccine development, concentrating on infectious diseases including COVID-19. Using examples from several diseases, we review how single-cell RNA sequencing has been used to evaluate the immunological response to different vaccine platforms and regimens. By highlighting published and unpublished single-cell RNA sequencing studies relevant to vaccinology, we discuss some general considerations how the field could be enriched with the widespread adoption of this technology.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , RNA-Seq/métodos , Análise de Célula Única , Vacinologia/métodos , Vacinas Virais/administração & dosagem , Animais , COVID-19 , Linhagem Celular , Ensaios Clínicos como Assunto , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Celular/genética , Imunidade Inata/genética , Imunogenicidade da Vacina , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , RNA Viral/isolamento & purificação , SARS-CoV-2 , Vacinas Virais/imunologia
13.
Virus Res ; 287: 198108, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32768490

RESUMO

Viral infections are dangerous diseases for human health worldwide, which lead to significant morbidity and mortality each year. Because of their importance and the lack of effective therapeutic approaches, further attempts should be made to discover appropriate alternative or complementary treatments. Melatonin, a multifunctional neurohormone mainly synthesized and secreted by the pineal gland, plays some roles in the treatment of viral infections. Regarding a deadly outbreak of COVID-19 across the world, we decided to discuss melatonin functions against various viral infections including COVID-19. Therefore, in this review, we summarize current evidence on melatonin therapy for viral infections with focus on possible underlying mechanisms of melatonin actions.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/virologia , Melatonina/farmacologia , Pneumonia Viral/virologia , Antioxidantes , Antivirais/uso terapêutico , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Melatonina/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/epidemiologia , Pneumonia Viral/metabolismo , SARS-CoV-2 , Transdução de Sinais/efeitos dos fármacos , Vacinação , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Viroses/tratamento farmacológico , Viroses/metabolismo , Viroses/virologia
14.
J Med Life ; 13(2): 241-248, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32742521

RESUMO

Cell culture is one of the most commonly used techniques in the production of biological products. Many physical and chemical parameters may affect cell growth and proliferation. This study was conducted to investigate the effect of chemical components as supplements using the experimental design method, which aimed at reducing the number of experiments. For this purpose, supplements including chemical components using four levels, with three replications in suspension and batch culture conditions, were examined for 72 hours using the Taguchi experimental design method. From the experiments, it was concluded that the culture media composition had a significant impact on final cell count and pH. High concentrations of different media composition alone were insufficient to ensure higher cell count. According to the results, this insufficiency was associated with an increase of 20% in the number of final cells. In the majority of cultures, the number of final cells at 48 hours increased relative to the number of final cells at 24 hours after culturing the cells.


Assuntos
Técnicas de Cultura de Células/métodos , Vírus da Febre Aftosa/imunologia , Rim/citologia , Vacinas Virais/imunologia , Aminoácidos/farmacologia , Animais , Contagem de Células , Células Cultivadas , Cricetinae , Vírus da Febre Aftosa/efeitos dos fármacos , Glucose/farmacologia , Concentração de Íons de Hidrogênio , Polietilenoglicóis/química , Proteínas/farmacologia , Vitaminas/farmacologia
15.
Cell Host Microbe ; 28(3): 486-496.e6, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32738193

RESUMO

There is an urgent need for vaccines and therapeutics to prevent and treat COVID-19. Rapid SARS-CoV-2 countermeasure development is contingent on the availability of robust, scalable, and readily deployable surrogate viral assays to screen antiviral humoral responses, define correlates of immune protection, and down-select candidate antivirals. Here, we generate a highly infectious recombinant vesicular stomatitis virus (VSV) bearing the SARS-CoV-2 spike glycoprotein S as its sole entry glycoprotein and show that this recombinant virus, rVSV-SARS-CoV-2 S, closely resembles SARS-CoV-2 in its entry-related properties. The neutralizing activities of a large panel of COVID-19 convalescent sera can be assessed in a high-throughput fluorescent reporter assay with rVSV-SARS-CoV-2 S, and neutralization of rVSV-SARS-CoV-2 S and authentic SARS-CoV-2 by spike-specific antibodies in these antisera is highly correlated. Our findings underscore the utility of rVSV-SARS-CoV-2 S for the development of spike-specific therapeutics and for mechanistic studies of viral entry and its inhibition.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/fisiologia , Vírus da Estomatite Vesicular Indiana/fisiologia , Enzima de Conversão de Angiotensina 2 , Animais , Antivirais/farmacologia , Betacoronavirus/genética , Betacoronavirus/fisiologia , COVID-19 , Vacinas contra COVID-19 , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Avaliação Pré-Clínica de Medicamentos , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Mutação , Testes de Neutralização , Pandemias/prevenção & controle , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/fisiologia , Pneumonia Viral/prevenção & controle , Pneumonia Viral/terapia , Receptores Virais/genética , Receptores Virais/fisiologia , Recombinação Genética , SARS-CoV-2 , Serina Endopeptidases/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Vírus da Estomatite Vesicular Indiana/genética , Vacinas Virais/genética , Vacinas Virais/imunologia , Internalização do Vírus , Replicação Viral/genética , Tratamento Farmacológico da COVID-19
16.
Front Immunol ; 11: 1888, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849647

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes severe respiratory tract infections in humans (COVID-19), has become a global health concern. Currently, several vaccine candidates against SARS-CoV-2 are in clinical trials but approval of these vaccines is likely to take a long time before they are available for public use. In a previous report, the importance of passive immunity and how immunoglobulin (Ig)G collected from recovered coronavirus patients could help in the protection against COVID-19 and boost the immune system of new patients was reported. Passive immunity by immunoglobulin transfer is a concept employed by most mammals and bovine IgG has a role to play in human therapy. IgG is one of the major components of the immunological activity found in cow's milk and colostrum. Heterologous transfer of passive immunity associated with the consumption of bovine immune milk by humans has been investigated for decades for its immunological activity against infections. This short review focuses on passive immunity and how microfiltered raw immune milk or colostrum collected from cows vaccinated against SARS-CoV-2 could provide short-term protection against SARS-CoV-2 infection in humans and could be used as an option until a vaccine becomes commercially available.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Ingestão de Líquidos/imunologia , Imunização Passiva/métodos , Leite/imunologia , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/terapia , Vacinação , Animais , Anticorpos Antivirais/imunologia , COVID-19 , Bovinos , Colostro/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Feminino , Humanos , Imunoglobulina G/imunologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , SARS-CoV-2 , Vacinas Virais/imunologia
17.
Int J Biol Macromol ; 164: 331-343, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32679328

RESUMO

Since the outbreak of the novel coronavirus disease COVID-19, caused by the SARS-CoV-2 virus, it has spread rapidly worldwide and poses a great threat to public health. This is the third serious coronavirus outbreak in <20 years, following SARS in 2002-2003 and MERS in 2012. So far, there are almost no specific clinically effective drugs and vaccines available for COVID-19. Polysaccharides with good safety, immune regulation and antiviral activity have broad application prospects in anti-virus, especially in anti-coronavirus applications. Here, we reviewed the antiviral mechanisms of some polysaccharides, such as glycosaminoglycans, marine polysaccharides, traditional Chinese medicine polysaccharides, and their application progress in anti-coronavirus. In particular, the application prospects of polysaccharide-based vaccine adjuvants, nanomaterials and drug delivery systems in the fight against novel coronavirus were also analyzed and summarized. Additionally, we speculate the possible mechanisms of polysaccharides anti-SARS-CoV-2, and propose the strategy of loading S or N protein from coronavirus onto polysaccharide capped gold nanoparticles vaccine for COVID-19 treatment. This review may provide a new approach for the development of COVID-19 therapeutic agents and vaccines.


Assuntos
Antivirais/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Coronavirus/efeitos dos fármacos , Polissacarídeos/farmacologia , Vacinas Virais/farmacologia , Animais , Antivirais/química , Antivirais/uso terapêutico , Betacoronavirus/química , Betacoronavirus/imunologia , COVID-19 , Vacinas contra COVID-19 , Coronavirus/imunologia , Infecções por Coronavirus/imunologia , Humanos , Modelos Moleculares , Pandemias/prevenção & controle , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/prevenção & controle , Polissacarídeos/química , Polissacarídeos/uso terapêutico , SARS-CoV-2 , Vacinas Virais/química , Vacinas Virais/imunologia
18.
Comput Biol Med ; 121: 103749, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32568687

RESUMO

This paper continues a recent study of the spike protein sequence of the COVID-19 virus (SARS-CoV-2). It is also in part an introductory review to relevant computational techniques for tackling viral threats, using COVID-19 as an example. Q-UEL tools for facilitating access to knowledge and bioinformatics tools were again used for efficiency, but the focus in this paper is even more on the virus. Subsequence KRSFIEDLLFNKV of the S2' spike glycoprotein proteolytic cleavage site continues to appear important. Here it is shown to be recognizable in the common cold coronaviruses, avian coronaviruses and possibly as traces in the nidoviruses of reptiles and fish. Its function or functions thus seem important to the coronaviruses. It might represent SARS-CoV-2 Achilles' heel, less likely to acquire resistance by mutation, as has happened in some early SARS vaccine studies discussed in the previous paper. Preliminary conformational analysis of the receptor (ACE2) binding site of the spike protein is carried out suggesting that while it is somewhat conserved, it appears to be more variable than KRSFIEDLLFNKV. However compounds like emodin that inhibit SARS entry, apparently by binding ACE2, might also have functions at several different human protein binding sites. The enzyme 11ß-hydroxysteroid dehydrogenase type 1 is again argued to be a convenient model pharmacophore perhaps representing an ensemble of targets, and it is noted that it occurs both in lung and alimentary tract. Perhaps it benefits the virus to block an inflammatory response by inhibiting the dehydrogenase, but a fairly complex web involves several possible targets.


Assuntos
Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/prevenção & controle , Glicoproteína da Espícula de Coronavírus/química , Vacinas Virais/imunologia , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Animais , Antivirais/farmacologia , Betacoronavirus/química , Betacoronavirus/genética , Betacoronavirus/imunologia , Sítios de Ligação , COVID-19 , Vacinas contra COVID-19 , Biologia Computacional , Coronavirus/química , Coronavirus/genética , Coronavirus/imunologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Desenho de Fármacos , Farmacorresistência Viral/genética , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Modelos Moleculares , Mutação , Peptidomiméticos/farmacologia , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , SARS-CoV-2 , Homologia de Sequência de Aminoácidos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/genética
19.
Mol Pharm ; 17(8): 2952-2963, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32539415

RESUMO

The interactions between antigen and adjuvant were among the most significant factors influencing the immunogenicity of vaccines, especially for unstable antigens like inactivated foot and mouth disease virus (iFMDV). Here we propose a novel antigen delivery pattern based on the coordination interaction between transition metal ions Zn2+ chelated to chitosan nanoparticles and iFMDV, which is known to be rich in histidine. The zinc chelated chitosan particles (CP-PEI-Zn) were prepared by cross-linking chitosan particles (CP) with sodium tripolyphosphate (TPP), modifying with metal chelator polyethylenimine (PEI), and subsequent chelating of Zn2+. The coordination interaction was confirmed by analyzing the adsorption and desorption behavior of iFMDV on CP-PEI-Zn by high-performance size exclusion chromatography (HPSEC), while the CP-PEI without chelating Zn2+ loads iFMDV mainly through electrostatic interactions. The iFMDV loaded on CP-PEI-Zn showed better thermal stability than that on CP-PEI, as revealed by a slightly higher transition temperature (Tm) related to iFMDV dissociation. After subcutaneous immunization in female Balb/C mice, antigens loaded on CP-PEI and CP-PEI-Zn all induced higher specific antibody titers, better activation of B lymphocytes, and more effector-memory T cells proliferation than the free antigen and iFMDV adjuvanted with ISA 206 emulsion did. Moreover, CP-PEI-Zn showed superior efficacy to CP-PEI in promoting the proliferation of effector-memory T cells and secretion of cytokines, indicating a more potent cellular immune response. In summary, the CP-PEI-Zn stabilized the iFMDV after loading and promoted both humoral and cellular immune responses, thus reflecting its potential to be a promising adjuvant for the iFMDV vaccine and other unstable viral antigens.


Assuntos
Antígenos Virais/química , Antígenos Virais/imunologia , Vírus da Febre Aftosa/imunologia , Imunidade Celular/imunologia , Vacinas de Produtos Inativados/imunologia , Zinco/química , Adjuvantes Imunológicos/farmacologia , Animais , Linhagem Celular , Cricetinae , Citocinas/imunologia , Sistemas de Liberação de Medicamentos/métodos , Feminino , Febre Aftosa/imunologia , Imunidade Humoral/imunologia , Memória Imunológica/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Vacinas Virais/imunologia
20.
Vet Immunol Immunopathol ; 225: 110061, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32422443

RESUMO

Our previous study demonstrated that ginseng stem-leaf saponins (GSLS) in combination with selenium (GSLS-Se) have adjuvant effect on the live vaccine of Newcastle disease virus (NDV) and infectious bronchitis virus (IBV) in intraocular-and-intranasal immunization in chickens. The present study was to investigate the potential molecular mechanisms involved in the immunomodulation of GSLS-Se on the Harderian gland (HG). It was found that the window allowing animals susceptible to infections due to low antibody titers became smaller or even completely closed because of increased NDV-specific HI titers when NDV vaccine and GSLS-Se were coadministered for immunization at early life in chickens. In addition, NDV-specific sIgA and the numbers of IgG+, IgA+, IgM+ plasma cells were significantly more in GSLS-Se group than the control in the HGs. Transcriptome analysis of HGs identified 1184 differentially expressed genes (DEGs) between GSLS-Se treated and non-treated groups. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses identified 42 significantly enriched GO terms and 13 canonical immune pathways. These findings indicated that GSLS-Se might exert immunomodulatory effects through influencing the antioxidant regulation and modulating the activity of immune related enzymes. Besides, Toll-like receptor (TLR) signaling pathway and mitogen-activated protein kinase (MAPK) signaling pathway might be involved primarily in the immunomodulation. Therefore, enhanced antibody responses in GSLS-Se group may be attributed to the immunomodulatory effects of GSLS-Se on the immune-related gene profile expressed in the immunocompetent cells of the HGs.


Assuntos
Glândula de Harder/efeitos dos fármacos , Fatores Imunológicos/administração & dosagem , Doença de Newcastle/prevenção & controle , Panax/química , Saponinas/administração & dosagem , Selênio/administração & dosagem , Vacinas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Animais , Anticorpos Antivirais/sangue , Galinhas , Feminino , Perfilação da Expressão Gênica , Doença de Newcastle/imunologia , Vírus da Doença de Newcastle , Folhas de Planta/química , Saponinas/imunologia , Selênio/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Virais/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA