Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Expert Rev Vaccines ; 17(12): 1123-1133, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30417706

RESUMO

INTRODUCTION: Dengue is a serious global health problem endemic in Brazil. Consequently, our aim was to measure the costs and disease burden of symptomatic dengue infections in Brazil from the perspective of the Brazilian Public Health System (SUS) between 2000 and 2015, using Brazilian public health system databases. Specific age group incidence estimates were used to calculate the disability-adjusted life years (DALYs) to gain a better understanding of the disease burden. Areas covered: SUS spent almost USD159 million and USD10 million to treat dengue and severe dengue, respectively, between 2000 and 2015. This is principally hospitalization costs, with the majority of patients self-treated at home with minor symptoms. The average notification rate for dengue was 273 per 100,000 inhabitants and three per 100,000 for severe dengue, with annual DALYs estimates ranging between 72.35 and 6,824.45 during the 16 years. Expert commentary: The epidemiological and morbidity burden associated with dengue is substantial in Brazil, with costs affected by the fact that most patients self-treat at home with these costs not included in SUS. The Brazilian government urgently needs to proactively evaluate the real costs and clinical benefits of any potential dengue vaccination program by the National Immunization Program to guide future decision-making.


Assuntos
Efeitos Psicossociais da Doença , Vacinas contra Dengue/administração & dosagem , Dengue/epidemiologia , Anos de Vida Ajustados por Qualidade de Vida , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Brasil/epidemiologia , Criança , Pré-Escolar , Bases de Dados Factuais , Dengue/economia , Dengue/prevenção & controle , Feminino , Política de Saúde , Custos Hospitalares/estatística & dados numéricos , Hospitalização/economia , Hospitalização/estatística & dados numéricos , Humanos , Programas de Imunização/organização & administração , Incidência , Lactente , Masculino , Pessoa de Meia-Idade , Programas Nacionais de Saúde/economia , Programas Nacionais de Saúde/organização & administração , Saúde Pública , Adulto Jovem
2.
Am J Prev Med ; 49(6 Suppl 4): S334-44, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26590433

RESUMO

Dengue is a rapidly expanding global health problem. Development of a safe and efficacious tetravalent vaccine along with strategic application of vector control activities represents a promising approach to reducing the global disease burden. Although many vaccine development challenges exist, numerous candidates are in clinical development and one has been tested in three clinical endpoint studies. The results of these studies have raised numerous questions about how we measure vaccine immunogenicity and how these readouts are associated with clinical outcomes in vaccine recipients who experience natural infection. In this review the authors discuss the dengue vaccine pipeline, development challenges, the dengue vaccine-immunologic profiling intersection, and research gaps.


Assuntos
Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/imunologia , Dengue/prevenção & controle , Animais , Anticorpos Neutralizantes/imunologia , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Projetos de Pesquisa , Organização Mundial da Saúde
3.
Vaccine ; 33(50): 7126-34, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26458804

RESUMO

This review focuses on a dengue virus (DENV) vaccine candidate based on a recombinant subunit approach which targets the DENV envelope glycoprotein (E). Truncated versions of E consisting of the N-terminal portion of E (DEN-80E) have been expressed recombinantly in the Drosophila S2 expression system and shown to have native-like conformation. Preclinical studies demonstrate that formulations containing tetravalent DEN-80E adjuvanted with ISCOMATRIX™ adjuvant induce high titer virus neutralizing antibodies and IFN-γ producing T cells in flavivirus-naïve non-human primates. The preclinical data further suggest that administration of such formulations on a 0, 1, 6 month schedule may result in higher maximum virus neutralizing antibody titers and better durability of those titers compared to administration on a 0, 1, 2 month schedule. In addition, the virus neutralizing antibody titers induced by adjuvanted tetravalent DEN-80E compare favorably to the titers induced by a tetravalent live virus comparator. Furthermore, DEN-80E was demonstrated to be able to boost virus neutralizing antibody titers in macaques that have had a prior DENV exposure. A monovalent version of the vaccine candidate, DEN1-80E, was formulated with Alhydrogel™ and studied in a proof-of-principle Phase I clinical trial by Hawaii Biotech, Inc. (NCT00936429). The clinical trial results demonstrate that both the 10 µg and 50 µg formulations of DEN1-80E with 1.25 mg of elemental aluminum were immunogenic when administered in a 3-injection series (0, 1, 2 months) to healthy, flavivirus-naïve adults. The vaccine formulations induced DENV-1 neutralizing antibodies in the majority of subjects, although the titers in most subjects were modest and waned over time. Both the 10 µg DEN1-80E and the 50 µg DEN1-80E formulations with Alhydrogel™ were generally well tolerated.


Assuntos
Ensaios Clínicos Fase I como Assunto , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/imunologia , Dengue/prevenção & controle , Avaliação Pré-Clínica de Medicamentos , Adjuvantes Imunológicos/administração & dosagem , Hidróxido de Alumínio/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Colesterol/administração & dosagem , Dengue/epidemiologia , Vacinas contra Dengue/genética , Vacinas contra Dengue/isolamento & purificação , Combinação de Medicamentos , Humanos , Esquemas de Imunização , Interferon gama/metabolismo , Macaca , Fosfolipídeos/administração & dosagem , Saponinas/administração & dosagem , Linfócitos T/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/isolamento & purificação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/isolamento & purificação
4.
Vaccine ; 33(50): 7135-40, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26458805

RESUMO

Since the early 1990s, DNA immunization has been used as a platform for developing a tetravalent dengue vaccine in response to the high priority need for protecting military personnel deployed to dengue endemic regions of the world. Several approaches have been explored ranging from naked DNA immunization to the use of live virus vectors to deliver the targeted genes for expression. Pre-clinical animal studies were largely successful in generating anti-dengue cellular and humoral immune responses that were protective either completely or partially against challenge with live dengue virus. However, Phase 1 clinical evaluation of a prototype monovalent dengue 1 DNA vaccine expressing prM and E genes revealed anti-dengue T cell IFNγ responses, but poor neutralizing antibody responses. These less than optimal results are thought to be due to poor uptake and expression of the DNA vaccine plasmids. Because DNA immunization as a vaccine platform has the advantages of ease of manufacture, flexible genetic manipulation and enhanced stability, efforts continue to improve the immunogenicity of these vaccines using a variety of methods.


Assuntos
Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/imunologia , Dengue/prevenção & controle , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Ensaios Clínicos Fase I como Assunto , Dengue/epidemiologia , Vacinas contra Dengue/genética , Vacinas contra Dengue/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos , Humanos , Primatas , Vacinas de DNA/genética , Vacinas de DNA/isolamento & purificação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/isolamento & purificação
5.
Vaccine ; 33(33): 4105-16, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26144900

RESUMO

We describe here the preclinical development of a dengue vaccine composed of recombinant subunit carboxy-truncated envelope (E) proteins (DEN-80E) for each of the four dengue serotypes. Immunogenicity and protective efficacy studies in Rhesus monkeys were conducted to evaluate monovalent and tetravalent DEN-80E vaccines formulated with ISCOMATRIX™ adjuvant. Three different doses and two dosing regimens (0, 1, 2 months and 0, 1, 2, and 6 months) were evaluated in these studies. We first evaluated monomeric (DEN4-80E) and dimeric (DEN4-80EZip) versions of DEN4-80E, the latter generated in an attempt to improve immunogenicity. The two antigens, evaluated at 6, 20 and 100 µg/dose formulated with ISCOMATRIX™ adjuvant, were equally immunogenic. A group immunized with 20 µg DEN4-80E and Alhydrogel™ induced much weaker responses. When challenged with wild-type dengue type 4 virus, all animals in the 6 and 20 µg groups and all but one in the DEN4-80EZip 100 µg group were protected from viremia. Two out of three monkeys in the Alhydrogel™ group had breakthrough viremia. A similar study was conducted to evaluate tetravalent formulations at low (3, 3, 3, 6 µg of DEN1-80E, DEN2-80E, DEN3-80E and DEN4-80E respectively), medium (10, 10, 10, 20 µg) and high (50, 50, 50, 100 µg) doses. All doses were comparably immunogenic and induced high titer, balanced neutralizing antibodies against all four DENV. Upon challenge with the four wild-type DENV, all animals in the low and medium dose groups were protected against viremia while two animals in the high-dose group exhibited breakthrough viremia. Our studies also indicated that a 0, 1, 2 and 6 month vaccination schedule is superior to the 0, 1, and 2 month schedule in terms of durability. Overall, the subunit vaccine was demonstrated to induce strong neutralization titers resulting in protection against viremia following challenge even 8-12 months after the last vaccine dose.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Colesterol/administração & dosagem , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/imunologia , Dengue/prevenção & controle , Fosfolipídeos/administração & dosagem , Saponinas/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Feminino , Esquemas de Imunização , Macaca mulatta , Masculino , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Viremia/prevenção & controle
6.
Vaccine ; 33(15): 1830-8, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25728317

RESUMO

Dengue infection is on the rise in many endemic areas of the tropics. Vaccination remains the most realistic strategy for prevention of this potentially fatal viral disease but there is currently no effective vaccine that could protect against all four known serotypes of the dengue virus. This study describes the generation and testing of a novel vaccination approach against dengue based on recombinant immune complexes (RIC). We modelled the dengue RIC on the existing Ebola RIC (Phoolcharoen, et al. Proc Natl Acad Sci USA 2011;108(Dec (51)):20695) but with a key modification that allowed formation of a universal RIC platform that can be easily adapted for use for other pathogens. This was achieved by retaining only the binding epitope of the 6D8 ant-Ebola mAb, which was then fused to the consensus dengue E3 domain (cEDIII), resulting in a hybrid dengue-Ebola RIC (DERIC). We expressed human and mouse versions of these molecules in tobacco plants using a geminivirus-based expression system. Following purification from the plant extracts by protein G affinity chromatography, DERIC bound to C1q component of complement, thus confirming functionality. Importantly, following immunization of mice, DERIC induced a potent, virus-neutralizing anti-cEDIII humoral immune response without exogenous adjuvants. We conclude that these self-adjuvanting immunogens have the potential to be developed as a novel vaccine candidate for dengue infection, and provide the basis for a universal RIC platform for use with other antigens.


Assuntos
Adjuvantes Imunológicos , Anticorpos Antivirais/imunologia , Complexo Antígeno-Anticorpo/imunologia , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Dengue/prevenção & controle , Vacinação/métodos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Complexo Antígeno-Anticorpo/administração & dosagem , Complexo Antígeno-Anticorpo/genética , Linhagem Celular , Complemento C1q/imunologia , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/genética , Vacinas contra Dengue/isolamento & purificação , Ebolavirus/genética , Ebolavirus/imunologia , Epitopos/imunologia , Geminiviridae/genética , Humanos , Imunidade Humoral , Camundongos , Folhas de Planta , Nicotiana , Proteínas do Envelope Viral/imunologia
7.
Asian Pac J Trop Med ; 7(3): 169-78, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24507635

RESUMO

Dengue is a common pathogenic disease often proving fatal, more commonly affecting the tropics. Aedes mosquito is the vector for this disease, and outbreaks of dengue often cause mass damage to life. The current review is an effort to present an insight into the causes, etiology, symptoms, transmission, diagnosis, major organs affected, mitigation and line of treatment of this disease with special emphasis on drugs of natural origin. The disease has a potential to spread as an endemic, often claiming several lives and thus requires concerted efforts to work out better treatment options. Traditional medicine offers an alternative solution and could be explored as a safer treatment option. Development of a successful vaccine and immunization technique largely remains a challenge and a better antiviral approach needs to be worked out to complement the supportive therapy. No single synthetic molecule has found to be wholly effective enough to offer curative control and the line of treatment mostly utilizes a combination of fluid replacement and antipyretics-analgesics like molecules to provide symptomatic relief.


Assuntos
Dengue/terapia , Animais , Dengue/diagnóstico , Vacinas contra Dengue/administração & dosagem , Vírus da Dengue/isolamento & purificação , Humanos , Extratos Vegetais/administração & dosagem
8.
Vaccine ; 31(41): 4501-7, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-23896423

RESUMO

A recent clinical trial of a live-attenuated tetravalent chimeric yellow fever-dengue vaccine afforded no protection against disease caused by dengue 2 (DENV-2). This outcome was unexpected as two or more doses of this vaccine had raised broad neutralizing antibody responses. Data from pre-clinical subhuman primate studies revealed that vaccination with the monotypic DENV-2 component failed to meet established criteria for solid protection to homotypic live virus challenge. Accordingly, it is suggested that preclinical testing adopt more rigorous criteria for protection and that Phase I testing be extended to require evidence of solid monotypic protective immunity for each component of a dengue vaccine by direct challenge with live-attenuated DENV. Because live-attenuated tetravalent DENV vaccines exhibit evidence of immunological interference phenomena, during Phase II, volunteers given mixtures of DENV 1-4 vaccines should be separately challenged with monotypic live-attenuated DENV. Immune responses to live-attenuated challenge viruses and vaccine strains should be studied in an attempt to develop useful in vitro correlates of in vivo protection. Finally, it will be important to learn if DENV non-structural protein 1 (NS1) contributes to pathogenesis of the vascular permeability syndrome in humans. If so, immunity to dengue 1-4 NS1 may be crucial to prevent severe disease.


Assuntos
Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/imunologia , Dengue/imunologia , Dengue/prevenção & controle , Vacinação/métodos , Animais , Pesquisa Biomédica/métodos , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Resultado do Tratamento
9.
Arch Virol ; 158(7): 1523-31, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23456422

RESUMO

We have previously demonstrated that vaccination with a subunit dengue vaccine containing a consensus envelope domain III with aluminum phosphate elicits neutralizing antibodies against all four serotypes of dengue virus in mice. In this study, we evaluated the immunogenicity of the subunit dengue vaccine in non-human primates. After vaccination, monkeys that received the subunit vaccine with aluminum phosphate developed a significantly strong and long-lasting antibody response. A specific T cell response with cytokine production was also induced, and this correlated with the antibody response. Additionally, neutralizing antibodies against serotype 2 were detected in two of three monkeys. The increase in serotype-2-specific antibody titers and avidity observed in these two monkeys suggested that a serotype-2-biased antibody response occurs. These data provide evidence that a protective neutralizing antibody response was successfully elicited in non-human primates by the dengue subunit vaccine with aluminum phosphate adjuvant.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Proteínas do Envelope Viral/imunologia , Adjuvantes Imunológicos/administração & dosagem , Compostos de Alumínio/administração & dosagem , Animais , Afinidade de Anticorpos , Citocinas/metabolismo , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/genética , Vírus da Dengue/genética , Haplorrinos , Fosfatos/administração & dosagem , Linfócitos T/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Proteínas do Envelope Viral/genética
10.
J Clin Virol ; 46 Suppl 2: S16-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19800561

RESUMO

A candidate tetravalent (TV) dengue vaccine based on the yellow fever (YF) 17D vaccine has been developed by sanofi pasteur. This dengue TV vaccine induced a controlled dendritic cell stimulation in vitro. In clinical trials, Th1 and CD8 responses were induced with an IFN-gamma/TNF-alpha ratio favouring IFN-gamma in both cases, regardless of whether the vaccine recipients were flavivirus naive or not. There was an absence of Th2 response in all cases. The Th1 response was dominated by the D4 serotype in flavivirus naive individuals after initial vaccination but broadened to include all serotypes after second vaccination. This broadened response was also observed after primary dengue TV vaccination in subjects previously administered monovalent live-attenuated dengue 1 and dengue 2 vaccines. Notably, virtually no cross-reactivity between YF 17D and dengue NS3 antigens at the CD8 level was observed. Clinical and pre-clinical results support the favourable immunogenicity and short-term safety of the dengue TV. Future studies will establish the longevity of the vaccine-induced immunity and requirements for boosters.


Assuntos
Vacinas contra Dengue/imunologia , Animais , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Vacinas contra Dengue/administração & dosagem , Avaliação Pré-Clínica de Medicamentos , Citometria de Fluxo , Humanos , Imunidade Inata/imunologia , Interferon gama/imunologia , Células Th1/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA