Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
ACS Nano ; 17(19): 18758-18774, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37814788

RESUMO

RNA vaccines based on lipid nanoparticles (LNPs) with in vitro transcribed mRNA (IVT-mRNA) encapsulated are now a currently successful but still evolving modality of vaccines. One of the advantages of RNA vaccines is their ability to induce CD8+ T-cell-mediated cellular immunity that is indispensable for excluding pathogen-infected cells or cancer cells from the body. In this study, we report on the development of LNPs with an enhanced capability for inducing cellular immunity by using an ionizable lipid with a vitamin E scaffold. An RNA vaccine that contained this ionizable lipid and an IVT-mRNA encoding a model antigen ovalbumin (OVA) induced OVA-specific cytotoxic T cell responses and showed an antitumor effect against an E.G7-OVA tumor model. Vaccination with the LNPs conferred protection against lethal infection by Toxoplasma gondii using its antigen TgPF. The vitamin E scaffold-dependent type I interferon response was important for effector CD8+ T cell differentiation induced by the mRNA-LNPs. Our findings also revealed that conventional dendritic cells (cDCs) were essential for achieving CD8+ T cell responses induced by the mRNA-LNPs, while the XCR1-positive subset of cDCs, cDC1 specialized for antigen cross-presentation, was not required. Consistently, the mRNA-LNPs were found to selectively transfect another subset of cDCs, cDC2 that had migrated from the skin to lymph nodes, where they could make vaccine-antigen-dependent contacts with CD8+ T cells. The findings indicate that the activation of innate immune signaling by the adjuvant activity of the vitamin E scaffold and the expression of antigens in cDC2 are important for subsequent antigen presentation and the establishment of antigen-specific immune responses.


Assuntos
Nanopartículas , Linfócitos T Citotóxicos , Animais , Camundongos , Linfócitos T CD8-Positivos , Vitamina E/farmacologia , Vacinas Sintéticas , Vacinas de mRNA , Antígenos , Ovalbumina , RNA Mensageiro/genética , Lipídeos/farmacologia , Camundongos Endogâmicos C57BL , Células Dendríticas
2.
JAMA Intern Med ; 182(7): 739-746, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35696161

RESUMO

Importance: The risk of adverse events has been found to be low for participants receiving the BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna Inc) vaccines in randomized trials. However, a head-to-head comparison of their safety for a broader range of potential adverse events over longer follow-up and in larger and more diverse populations is lacking, to our knowledge. Objective: To compare the head-to-head safety in terms of risk of adverse events of the BNT162b2 and mRNA-1273 vaccines in the national health care databases of the US Department of Veterans Affairs, the largest integrated health care system in the US. Design, Setting, and Participants: In this cohort study, the electronic health records of US veterans who received a first dose of the BNT162b2 or mRNA-1273 vaccine between January 4 and September 20, 2021, were used. Recipients of each vaccine were matched in a 1:1 ratio according to their risk factors. Exposures: Vaccination with either the BNT162b2 vaccine, with a second dose scheduled 21 days later, or the mRNA-1273 vaccine, with a second dose scheduled 28 days later. Main Outcomes and Measures: A large panel of potential adverse events was evaluated; the panel included neurologic events, hematologic events, hemorrhagic stroke, ischemic stroke, myocardial infarction, other thromboembolic events, myocarditis or pericarditis, arrhythmia, kidney injury, appendicitis, autoimmune events, herpes zoster or simplex, arthritis or arthropathy, and pneumonia. Risks over 38 weeks were estimated using the Kaplan-Meier estimator. Results: Among 433 672 persons included in the matched vaccine groups, the median age was 69 years (IQR, 60-74 years), 93% of individuals were male, and 20% were Black. Estimated 38-week risks of adverse events were generally low after administration of either the BNT162b2 or the mRNA-1273 vaccine. Compared with the mRNA-1273 group, the BNT162b2 group had an excess per 10 000 persons of 10.9 events (95% CI, 1.9-17.4 events) of ischemic stroke, 14.8 events (95% CI, 7.9-21.8 events) of myocardial infarction, 11.3 events (95% CI, 3.4-17.7 events) of other thromboembolic events, and 17.1 events (95% CI, 8.8-30.2 events) of kidney injury. Estimates were largely similar among subgroups defined by age (<40, 40-69, and ≥70 years) and race (Black, White), but there were higher magnitudes of risk differences of ischemic stroke among older persons and White persons, kidney injury among older persons, and other thromboembolic events among Black persons. Small-magnitude differences between the 2 vaccines were seen within 42 days of the first dose, and few differences were seen within 14 days of the first dose. Conclusions and Relevance: The findings of this cohort study suggest that there were few differences in risk of adverse events within 14 days of the first dose of either the BNT162b2 or the mRNA-1273 vaccine and small-magnitude differences within 42 days of the first dose. The 38-week risks of adverse events were low in both vaccine groups, although risks were lower for recipients of the mRNA-1273 vaccine than for recipients of the BNT162b2 vaccine. Although the primary analysis was designed to detect safety events unrelated to SARS-CoV-2 infection, the possibility that these differences may partially be explained by a lower effectiveness of the BNT162b2 vaccine in preventing the sequelae of SARS-CoV-2 infection compared with the mRNA-1273 vaccine could not be ruled out. These findings may help inform decision-making in future vaccination campaigns.


Assuntos
COVID-19 , AVC Isquêmico , Infarto do Miocárdio , Veteranos , Vacina de mRNA-1273 contra 2019-nCoV , Idoso , Idoso de 80 Anos ou mais , Vacina BNT162 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos de Coortes , Feminino , Humanos , Masculino , SARS-CoV-2 , Vacinas de mRNA
4.
Clin Infect Dis ; 75(Suppl 1): S18-S23, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35607748

RESUMO

Systems vaccinology approaches have introduced novel tools for the evaluation of the safety profile of novel vaccine antigens by developing biomarkers of vaccine reactogenicity associated with potential adverse events. The use of such approaches may prove extremely advantageous in the context of a global pandemic where accelerated approval of new vaccine formulations for all ages is essential for the containment of the epidemic. The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had devastating effects on global health, but the emergency authorization of mRNA vaccines significantly reduced SARS-CoV-2-associated morbidity and mortality. Despite their favorable safety profile in adult populations, recent reports have raised concerns about an association of the mRNA-based vaccines with acute myocarditis, predominantly among male adolescents and young adults following the second vaccine dose. Here, we review data on myocarditis epidemiology following SARS-CoV-2 mRNA vaccination and describe potential mechanisms involved that may explain the sex- and age-related differences, focusing on mRNA immune reactivity. The case of vaccine-associated myocarditis highlights the need to incorporate precision vaccinology approaches for the development of safe and effective vaccines for everyone.


Assuntos
COVID-19 , Miocardite , Vacinas de mRNA , Adolescente , COVID-19/prevenção & controle , Humanos , Masculino , RNA Mensageiro , SARS-CoV-2 , Vacinação/efeitos adversos , Vacinologia , Vacinas Virais , Vacinas de mRNA/efeitos adversos
6.
Lancet Respir Med ; 10(7): 689-699, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35468336

RESUMO

BACKGROUND: The duration of protection against the omicron (B.1.1.529) variant for current COVID-19 vaccines is not well characterised. Vaccine-specific estimates are especially needed. We aimed to evaluate the effectiveness and durability of two and three doses of the BNT162b2 (Pfizer-BioNTech) mRNA vaccine against hospital and emergency department admissions due to the delta (B.1.617.2) and omicron variants. METHODS: In this case-control study with a test-negative design, we analysed electronic health records of members of Kaiser Permanente Southern California (KPSC), a large integrated health system in California, USA, from Dec 1, 2021, to Feb 6, 2022. Vaccine effectiveness was calculated in KPSC patients aged 18 years and older admitted to hospital or an emergency department (without a subsequent hospital admission) with a diagnosis of acute respiratory infection and tested for SARS-CoV-2 via PCR. Adjusted vaccine effectiveness was estimated with odds ratios from adjusted logistic regression models. This study is registered with ClinicalTrials.gov (NCT04848584). FINDINGS: Analyses were done for 11 123 hospital or emergency department admissions. In adjusted analyses, effectiveness of two doses of the BNT162b2 vaccine against the omicron variant was 41% (95% CI 21-55) against hospital admission and 31% (16-43) against emergency department admission at 9 months or longer after the second dose. After three doses, effectiveness of BNT162b2 against hospital admission due to the omicron variant was 85% (95% CI 80-89) at less than 3 months but fell to 55% (28-71) at 3 months or longer, although confidence intervals were wide for the latter estimate. Against emergency department admission, the effectiveness of three doses of BNT162b2 against the omicron variant was 77% (72-81) at less than 3 months but fell to 53% (36-66) at 3 months or longer. Trends in waning against SARS-CoV-2 outcomes due to the delta variant were generally similar, but with higher effectiveness estimates at each timepoint than those seen for the omicron variant. INTERPRETATION: Three doses of BNT162b2 conferred high protection against hospital and emergency department admission due to both the delta and omicron variants in the first 3 months after vaccination. However, 3 months after receipt of a third dose, waning was apparent against SARS-CoV-2 outcomes due to the omicron variant, including hospital admission. Additional doses of current, adapted, or novel COVD-19 vaccines might be needed to maintain high levels of protection against subsequent waves of SARS-CoV-2 caused by the omicron variant or future variants with similar escape potential. FUNDING: Pfizer.


Assuntos
COVID-19 , Vacina BNT162 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Estudos de Casos e Controles , Serviço Hospitalar de Emergência , Hospitais , Humanos , SARS-CoV-2/genética , Vacinas Sintéticas , Vacinas de mRNA
7.
JAMA Netw Open ; 5(4): e228879, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35471572

RESUMO

Importance: Postauthorization monitoring of vaccines in a large population may detect rare adverse events not identified in clinical trials such as Guillain-Barré syndrome (GBS), which has a background rate of 1 to 2 per 100 000 person-years. Objective: To describe cases and incidence of GBS following COVID-19 vaccination and assess the risk of GBS after vaccination for Ad.26.COV2.S (Janssen) and mRNA vaccines. Design, Setting, and Participants: This cohort study used surveillance data from the Vaccine Safety Datalink at 8 participating integrated health care systems in the United States. There were 10 158 003 participants aged at least 12 years. Data analysis was performed from November 2021 to February 2022. Exposures: Ad.26.COV2.S, BNT162b2 (Pfizer-BioNTech), or mRNA-1273 (Moderna) COVID-19 vaccine, including mRNA vaccine doses 1 and 2, December 13, 2020, to November 13, 2021. Main Outcomes and Measures: GBS with symptom onset in the 1 to 84 days after vaccination, confirmed by medical record review and adjudication. Descriptive characteristics of confirmed cases, GBS incidence rates during postvaccination risk intervals after each type of vaccine compared with the background rate, rate ratios (RRs) comparing GBS incidence in the 1 to 21 vs 22 to 42 days postvaccination, and RRs directly comparing risk of GBS after Ad.26.COV2.S vs mRNA vaccination, using Poisson regression adjusted for age, sex, race and ethnicity, site, and calendar day. Results: From December 13, 2020, through November 13, 2021, 15 120 073 doses of COVID-19 vaccines were administered to 7 894 989 individuals (mean [SE] age, 46.5 [0.02] years; 8 138 318 doses received [53.8%] by female individuals; 3 671 199 doses received [24.3%] by Hispanic or Latino individuals, 2 215 064 doses received [14.7%] by Asian individuals, 6 266 424 doses received [41.4%] by White individuals), including 483 053 Ad.26.COV2.S doses, 8 806 595 BNT162b2 doses, and 5 830 425 mRNA-1273 doses. Eleven cases of GBS after Ad.26.COV2.S were confirmed. The unadjusted incidence rate of GBS per 100 000 person-years in the 1 to 21 days after Ad.26.COV2.S was 32.4 (95% CI, 14.8-61.5), significantly higher than the background rate, and the adjusted RR in the 1 to 21 vs 22 to 42 days following Ad.26.COV2.S was 6.03 (95% CI, 0.79-147.79). Thirty-six cases of GBS after mRNA vaccines were confirmed. The unadjusted incidence rate per 100 000 person-years in the 1 to 21 days after mRNA vaccines was 1.3 (95% CI, 0.7-2.4) and the adjusted RR in the 1 to 21 vs 22 to 42 days following mRNA vaccines was 0.56 (95% CI, 0.21-1.48). In a head-to-head comparison of Ad.26.COV2.S vs mRNA vaccines, the adjusted RR was 20.56 (95% CI, 6.94-64.66). Conclusions and Relevance: In this cohort study of COVID-19 vaccines, the incidence of GBS was elevated after receiving the Ad.26.COV2.S vaccine. Surveillance is ongoing.


Assuntos
COVID-19 , Síndrome de Guillain-Barré , Vacina BNT162 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Estudos de Coortes , Feminino , Síndrome de Guillain-Barré/epidemiologia , Síndrome de Guillain-Barré/etiologia , Humanos , Incidência , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Vacinação/efeitos adversos , Vacinas Sintéticas , Vacinas de mRNA
8.
Pharmacoepidemiol Drug Saf ; 31(8): 921-925, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35404496

RESUMO

PURPOSE: How completely do hospital discharge diagnoses identify cases of myopericarditis after an mRNA vaccine? METHODS: We assembled a cohort 12-39 year-old patients, insured by Kaiser Permanente Northwest, who received at least one dose of an mRNA vaccine (Pfizer-BioNTech or Moderna) between December 2020 and October 2021. We followed them for up to 30 days after their second dose of an mRNA vaccine to identify encounters for myocarditis, pericarditis or myopericarditis. We compared two identification methods: A method that searched all encounter diagnoses using a brief text description (e.g., ICD-10-CM code I40.9 is defined as 'acute myocarditis, unspecified'). We searched the text description of all inpatient or outpatient encounter diagnoses (in any position) for "myocarditis" or "pericarditis." The other method was developed by the Centers for Disease Control and Prevention's Vaccine Safety Datalink (VSD), which searched for emergency department visits or hospitalizations with a select set of discharge ICD-10-CM diagnosis codes. For both methods, two physicians independently reviewed the identified patient records and classified them as confirmed, probable or not cases using the CDC's case definition. RESULTS: The encounter methodology identified 14 distinct patients who met the confirmed or probable CDC case definition for acute myocarditis or pericarditis with an onset within 21 days of receipt of COVID-19 vaccination. When we extended the search for relevant diagnoses to 30 days since vaccination, we identified two additional patients (for a total of 16 patients) who met the case definition for acute myocarditis or pericarditis, but those patients had been misdiagnosed at the time of their original presentation. Three of these patients had an ICD-10-CM code of I51.4 "Myocarditis, Unspecified;" that code was omitted by the VSD algorithm (in the late fall of 2021). The VSD methodology identified 11 patients who met the CDC case definition for acute myocarditis or pericarditis. Seven (64%) of the 11 patients had initial care for myopericarditis outside of a KPNW facility and their diagnosis could not be ascertained by the VSD methodology until claims were submitted (median delay of 33 days; range of 12-195 days). Among those who received a second dose of vaccine (n = 146 785), we estimated a risk as 95.4 cases of myopericarditis per million second doses administered (95% CI, 52.1-160.0). CONCLUSION: We identified additional valid cases of myopericarditis following an mRNA vaccination that would be missed by the VSD's search algorithm, which depends on select hospital discharge diagnosis codes. The true incidence of myopericarditis is markedly higher than the incidence reported to US advisory committees in the fall of 2021. The VSD should validate its search algorithm to improve its sensitivity for myopericarditis.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Prestação Integrada de Cuidados de Saúde , Miocardite , Pericardite , Adolescente , Adulto , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Criança , Humanos , Miocardite/induzido quimicamente , Miocardite/diagnóstico , Pericardite/induzido quimicamente , Pericardite/diagnóstico , Vacinação/efeitos adversos , Adulto Jovem , Vacinas de mRNA
9.
Sci Adv ; 8(3): eabj9815, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35044832

RESUMO

Safe and effective vaccines are needed to end the COVID-19 pandemic. Here, we report the preclinical development of a lipid nanoparticle­formulated SARS-CoV-2 mRNA vaccine, PTX-COVID19-B. PTX-COVID19-B was chosen among three candidates after the initial mouse vaccination results showed that it elicited the strongest neutralizing antibody response against SARS-CoV-2. Further tests in mice and hamsters indicated that PTX-COVID19-B induced robust humoral and cellular immune responses and completely protected the vaccinated animals from SARS-CoV-2 infection in the lung. Studies in hamsters also showed that PTX-COVID19-B protected the upper respiratory tract from SARS-CoV-2 infection. Mouse immune sera elicited by PTX-COVID19-B vaccination were able to neutralize SARS-CoV-2 variants of concern, including the Alpha, Beta, Gamma, and Delta lineages. No adverse effects were induced by PTX-COVID19-B in either mice or hamsters. Based on these results, PTX-COVID19-B was authorized by Health Canada to enter clinical trials in December 2020 with a phase 2 clinical trial ongoing.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Sintéticas/imunologia , Vacinas de mRNA/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Contagem de Linfócito CD4 , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Vacinas contra COVID-19/efeitos adversos , Canadá , Linhagem Celular , Cricetinae , Avaliação Pré-Clínica de Medicamentos , Feminino , Células HEK293 , Humanos , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Lipossomos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanopartículas , Glicoproteína da Espícula de Coronavírus/genética , Células Th1/imunologia
10.
Curr Opin Allergy Clin Immunol ; 21(6): 569-575, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34387280

RESUMO

PURPOSE OF REVIEW: Molecular forms of allergen-specific immunotherapy (AIT) are continuously emerging to improve the efficacy of the treatment, to shorten the duration of protocols and to prevent any side effects. The present review covers the recent progress in the development of AIT based on nucleic acid encoding allergens or CpG oligodeoxynucleotides (CpG-ODN). RECENT FINDINGS: Therapeutic vaccinations with plasmid deoxyribonucleic acid (DNA) encoding major shrimp Met e 1 or insect For t 2 allergen were effective for the treatment of food or insect bite allergy in respective animal models. DNA expressing hypoallergenic shrimp tropomyosin activated Foxp3+ T regulatory (Treg) cells whereas DNA encoding For t 2 down-regulated the expression of pruritus-inducing IL-31. Co-administrations of major cat allergen Fel d 1 with high doses of CpG-ODN reduced Th2 airway inflammation through tolerance induction mediated by GATA3+ Foxp3hi Treg cells as well as early anti-inflammatory TNF/TNFR2 signaling cascade. Non-canonical CpG-ODN derived from Cryptococcus neoformans as well as methylated CpG sites present in the genomic DNA from Bifidobacterium infantis mediated Th1 or Treg cell differentiation respectively. SUMMARY: Recent studies on plasmid DNA encoding allergens evidenced their therapeutic potential for the treatment of food allergy and atopic dermatitis. Unmethylated or methylated CpG-ODNs were shown to activate dose-dependent Treg/Th1 responses. Large clinical trials need to be conducted to confirm these promising preclinical data. Moreover, tremendous success of messenger ribonucleic acid (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 must encourage as well the re-exploration of mRNA vaccine platform for innovative AIT.


Assuntos
Dessensibilização Imunológica/métodos , Hipersensibilidade Imediata/terapia , Oligodesoxirribonucleotídeos/administração & dosagem , Vacinas de DNA/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Alérgenos/administração & dosagem , Alérgenos/genética , Alérgenos/imunologia , Animais , Ensaios Clínicos como Assunto , Dessensibilização Imunológica/tendências , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Hipersensibilidade Imediata/imunologia , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/imunologia , Plasmídeos/administração & dosagem , Plasmídeos/genética , Plasmídeos/imunologia , Resultado do Tratamento , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas de mRNA
11.
Medicina (Kaunas) ; 57(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803295

RESUMO

The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic warrants an imperative necessity for effective and safe vaccination, to restrain Coronavirus disease 2019 (COVID-19) including transmissibility, morbidity, and mortality. In this regard, intensive medical and biological research leading to the development of an arsenal of vaccines, albeit incomplete preconditioned evaluation, due to emergency. The subsequent scientific gap raises some concerns in the medical community and the general public. More specifically, the accelerated vaccine development downgraded the value of necessary pre-clinical studies to elicit medium- and long-term beneficial or harmful consequences. Previous experience and pathophysiological background of coronaviruses' infections and vaccine technologies, combined with the global vaccines' application, underlined the obligation of a cautious and qualitative approach, to illuminate potential vaccination-related adverse events. Moreover, the high SARS-CoV-2 mutation potential and the already aggregated genetical alterations provoke a rational vagueness and uncertainty concerning vaccines' efficacy against dominant strains and the respective clinical immunity. This review critically summarizes existing evidence and queries regarding SARS-CoV-2 vaccines, to motivate scientists' and clinicians' interest for an optimal, individualized, and holistic management of this unprecedented pandemic.


Assuntos
Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Vacina de mRNA-1273 contra 2019-nCoV , Adjuvantes Imunológicos/efeitos adversos , Doenças Autoimunes/induzido quimicamente , Vacina BNT162 , ChAdOx1 nCoV-19 , Aprovação de Drogas , Avaliação Pré-Clínica de Medicamentos , Juramento Hipocrático , Humanos , Efeitos Adversos de Longa Duração/induzido quimicamente , Modelos Animais , Medição de Risco , SARS-CoV-2 , Vacinas de Produtos Inativados/uso terapêutico , Vacinas Sintéticas/uso terapêutico , Vacinas de mRNA
12.
Front Immunol ; 11: 1048, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582169

RESUMO

In the last century, life expectancy has increased considerably, thanks to the introduction of antibiotics, hygiene and vaccines that have contributed to the cure and prevention of many infectious diseases. The era of antimicrobial therapy started in the nineteenth century with the identification of chemical compounds with antimicrobial properties. However, immediately after the introduction of these novel drugs, microorganisms started to become resistant through different strategies. Although resistance mechanisms were already present before antibiotic introduction, their large-scale use and mis-use have increased the number of resistant microorganisms. Rapid spreading of mobile elements by horizontal gene transfer such as plasmids and integrative conjugative elements (ICE) carrying multiple resistance genes has dramatically increased the worldwide prevalence of relevant multi drug-resistant human pathogens such as Staphylococcus aureus, Neisseria gonorrhoeae, and Enterobacteriaceae. Today, antimicrobial resistance (AMR) remains one of the major global concerns to be addressed and only global efforts could help in finding a solution. In terms of magnitude the economic impact of AMR is estimated to be comparable to that of climate global change in 2030. Although antibiotics continue to be essential to treat such infections, non-antibiotic therapies will play an important role in limiting the increase of antibiotic resistant microorganisms. Among non-antibiotic strategies, vaccines and therapeutic monoclonal antibodies (mAbs) play a strategic role. In this review, we will summarize the evolution and the mechanisms of antibiotic resistance, and the impact of AMR on life expectancy and economics.


Assuntos
Resistência Microbiana a Medicamentos/imunologia , Vacinas/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/imunologia , Infecções Bacterianas/terapia , Biotecnologia/métodos , Biotecnologia/tendências , Farmacorresistência Bacteriana/imunologia , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Infecções/tratamento farmacológico , Infecções/imunologia , Infecções/terapia , Modelos Imunológicos , Vacinas/imunologia , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/uso terapêutico , Vacinas de mRNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA