Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Nat Med ; 78(1): 91-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37707717

RESUMO

In East Asia, Panax ginseng is one of the most important medicinal plants and has been used in traditional medicines from ancient times. Today, P. ginseng is cultivated in Korea, China, and Japan. Although the genetic diversity of P. ginseng in Korea and China has been reported previously, that of P. ginseng cultivated in Japan is largely unknown. In the present study, genetic diversity of P. ginseng cultivated in Japan was analyzed using eight simple sequence repeat markers that have been used in other studies, and the results were compared with previous results for Korea and China. The correlation between genetic diversity and plant characteristics, such as ginsenoside contents, were also examined. The genetic diversity of P. ginseng in Japan was substantially different from that in Korea and China, probably due to Japan's history of cultivation and the ginseng reproduction system of agamospermy. The genetic analysis indicated that P. ginseng cultivated in Japan could be classified into two clusters. The classification was related to the contents of ginsenosides Re and Ro in the main root but not to the cultivation region of the samples. These results may be useful for the cultivation and quality control of P. ginseng in Japan.


Assuntos
Ginsenosídeos , Panax , Plantas Medicinais , Japão , Panax/genética , Ginsenosídeos/análise , China , Plantas Medicinais/genética , Variação Genética/genética , Raízes de Plantas/química
2.
Nature ; 624(7990): 122-129, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37993721

RESUMO

Before the colonial period, California harboured more language variation than all of Europe, and linguistic and archaeological analyses have led to many hypotheses to explain this diversity1. We report genome-wide data from 79 ancient individuals from California and 40 ancient individuals from Northern Mexico dating to 7,400-200 years before present (BP). Our analyses document long-term genetic continuity between people living on the Northern Channel Islands of California and the adjacent Santa Barbara mainland coast from 7,400 years BP to modern Chumash groups represented by individuals who lived around 200 years BP. The distinctive genetic lineages that characterize present-day and ancient people from Northwest Mexico increased in frequency in Southern and Central California by 5,200 years BP, providing evidence for northward migrations that are candidates for spreading Uto-Aztecan languages before the dispersal of maize agriculture from Mexico2-4. Individuals from Baja California share more alleles with the earliest individual from Central California in the dataset than with later individuals from Central California, potentially reflecting an earlier linguistic substrate, whose impact on local ancestry was diluted by later migrations from inland regions1,5. After 1,600 years BP, ancient individuals from the Channel Islands lived in communities with effective sizes similar to those in pre-agricultural Caribbean and Patagonia, and smaller than those on the California mainland and in sampled regions of Mexico.


Assuntos
Variação Genética , Povos Indígenas , Humanos , Agricultura/história , California/etnologia , Região do Caribe/etnologia , Etnicidade/genética , Etnicidade/história , Europa (Continente)/etnologia , Variação Genética/genética , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História Antiga , História Medieval , Migração Humana/história , Povos Indígenas/genética , Povos Indígenas/história , Ilhas , Idioma/história , México/etnologia , Zea mays , Genoma Humano/genética , Genômica , Alelos
3.
PeerJ ; 11: e16486, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025745

RESUMO

The genetic diversity of local coffee populations is crucial to breed new varieties better adapted to the increasingly stressful environment due to climate change and evolving consumer preferences. Unfortunately, local coffee germplasm conservation and genetic assessment have not received much attention. Molecular tools offer substantial benefits in identifying and selecting new cultivars or clones suitable for sustainable commercial utilization. New annotation methods, such as chloroplast barcoding, are necessary to produce accurate and high-quality phylogenetic analyses. This study used DNA barcoding techniques to examine the genetic relationships among fifty-six accessions collected from the southwestern part of Saudi Arabia. PCR amplification and sequence characterization were used to investigate the effectiveness of four barcoding loci: atpB-rbcl, trnL-trnF, trnT-trnL, and trnL. The maximum nucleotide sites, nucleotide diversity, and an average number of nucleotide differences were recorded for atpB-rbcl, while trnT-trnL had the highest variable polymorphic sites, segregating sites, and haploid diversity. Among the four barcode loci, trnT-trnL recorded the highest singleton variable sites, while trnL recorded the highest parsimony information sites. Furthermore, the phylogenetic analysis clustered the Coffea arabica genotypes into four different groups, with three genotypes (KSA31, KSA38, and KSA46) found to be the most divergent genotypes standing alone in the cluster and remained apart during the analysis. The study demonstrates the presence of considerable diversity among coffee populations in Saudi Arabia. Furthermore, it also shows that DNA barcoding is an effective technique for identifying local coffee genotypes, with potential applications in coffee conservation and breeding efforts.


Assuntos
Café , Código de Barras de DNA Taxonômico , Filogenia , Arábia Saudita , Melhoramento Vegetal , Variação Genética/genética , Nucleotídeos
4.
PeerJ ; 11: e16056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744244

RESUMO

Background: Gardenia jasminoides is a species of Chinese medicinal plant, which has high medicinal and economic value and rich genetic diversity, but the study on its genetic diversity is far not enough. Methods: In this study, one wild and one cultivated gardenia materials were resequenced using IlluminaHiSeq sequencing platform and the data were evaluated to understand the genomic characteristics of G. jasminoides. Results: After data analysis, the results showed that clean data of 11.77G, Q30 reached 90.96%. The average comparison rate between the sample and reference genome was 96.08%, the average coverage depth was 15X, and the genome coverage was 85.93%. The SNPs of FD and YP1 were identified, and 3,087,176 and 3,241,416 SNPs were developed, respectively. In addition, SNP non-synonymous mutation, InDel mutation, SV mutation and CNV mutation were also detected between the sample and the reference genome, and KEGG, GO and COG database annotations were made for genes with DNA level variation. The structural gene variation in the biosynthetic pathway of crocin and gardenia, the main medicinal substance of G. jasminoides was further explored, which provided basic data for molecular breeding and genetic diversity of G. jasminoides in the future.


Assuntos
Carotenoides , Gardenia , Plantas Medicinais , Análise de Sequência de DNA , Gardenia/genética , Gardenia/metabolismo , Genômica , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , China , Carotenoides/metabolismo , Variação Genética/genética
5.
ScientificWorldJournal ; 2023: 3761799, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313353

RESUMO

Sennaobtusifolia (L.) is a plant in the genus Senna that contributes to improving nutritional quality, food security, and better health protection for rural populations. However, very few studies have been devoted to it in Burkina Faso. Consequently, its genetic diversity remains poorly known. Such neglect would lead to the erosion of its genetic resource. The general objective of this study is to contribute to a better knowledge of the genetic diversity of the species in order to be able to issue scientific bases for its conservation, valorization, and genetic improvement. Sixty (60) accessions of Senna obtusifolia were collected in the wild from five provinces of three climatic zones of Burkina Faso. Molecular characterization was carried out using 18 SSR markers. Fifteen were polymorphic microsatellite markers leading one hundred and one (101) alleles in total, with an average of seven (7) alleles per locus. The number of effective alleles was 2.33. Expected heterozygosity, Shannon diversity index, and polymorphism information content averaged 0.47, 1.05, and 0.47. Molecular characterization revealed the existence of genetic diversity within the collection. This diversity has been structured into three genetic groups. Genetic group 3 presents the highest genetic diversity parameters.


Assuntos
Variação Genética , Conhecimento , Humanos , Burkina Faso , Senosídeos , Alelos , Variação Genética/genética
6.
Genes (Basel) ; 14(4)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37107709

RESUMO

Radix bupleuri is one of the bulk medicinal materials in China and it is widely adopted in clinical applications and drug discovery. The investigation of agronomic traits, active component content and genetic diversity in diverse Radix bupleuri germplasms may provide evidence to promote the selection of better strains. In this research, 13 germplasms from various sources were used to investigate the variations between different Radix bupleuri germplasms. Nine biological characteristics were noted in the field, and the levels of the two primary active ingredients were determined using high performance liquid chromatography (HPLC). Moreover, the molecular marker technique of inter-simple sequence repeat (ISSR) and the unweighted pair group method with arithmetic means (UPGMA) were employed to evaluate the molecular genetic diversity. The findings showed that there was a wide range of variation among the many varieties of Radix bupleuri, with coefficients of variation for agronomic traits and active component content ranging from 7.62% to 41.54% and 36.47% to 53.70%, respectively. Moreover, there are different degrees of relationship between the two. Since there was a significant correlation between root weight and saikosaponin content, it was possible to classify a plant based on its weight and anticipate its saikosaponin content. The 13 species were divided into four groups based on their germplasm by genetic markers-based cluster analysis. This indicated the possibility that the component content would not necessarily be related to germplasm and might easily be influenced by environmental factors. The use of ISSR marker technology made it possible to precisely identify the various Radix bupleuri provenances and its counterfeit products. There may be a way to prevent the misunderstandings caused by the appearance and composition of Chinese medicinal substances. In our study, the germplasm of Radix bupleuri that was widely circulated in the market was comprehensively evaluated in terms of agronomic traits, active components and molecular level, and identified by simple means, to provide a theoretical basis for the evaluation and screening of fine germplasms of Radix bupleuri.


Assuntos
Bupleurum , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/análise , Bupleurum/genética , Bupleurum/química , Variação Genética/genética , Repetições de Microssatélites/genética
7.
Genes (Basel) ; 13(11)2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36360175

RESUMO

Morinda officinalis How is well-known as a valuable medicinal plant found in some regions of Vietnam. This species is mainly used for treating male impotence, irregular menstruation, and rheumatoid arthritis. This study aimed to identify the species of and genetic diversity in three M. officinalis populations: one each in Quang Binh (QB), Thua Thien Hue (TTH), and Quang Nam (QN). In this study, four DNA barcoding markers (ITS1, ITS2, matK, and rbcL) were used to identify the species and 22 microsatellite markers were applied for population structure and diversity analyses. The results showed that the sequences of gene regions studied in M. officinalis had a high similarity (>95%) to the ITS1, ITS2, matK, and rbcL sequences of M. officinalis on BLAST. Of the four DNA barcoding markers used, ITS1 and ITS2 showed higher efficiency in DNA amplification of M. officinalis. From this study, 27 GenBank codes were published on BLAST. The results also revealed high levels of genetic diversity in populations. The average observed and expected heterozygosity values were HO = 0.513 and HE = 0.612, respectively. The average FST value was 0.206. Analysis of molecular variance (AMOVA) showed 70% variation within populations and 30% among populations. The population structure of M. officinalis inferred in STRUCTURE revealed that the optimum number of genetic groups for the admixture model was K = 2. These findings provided vital background information for future studies in the conservation of M. officinalis in both ex situ and in situ plans.


Assuntos
Código de Barras de DNA Taxonômico , Morinda , Filogenia , Código de Barras de DNA Taxonômico/métodos , DNA de Plantas/genética , Análise de Sequência de DNA , Vietnã , Marcadores Genéticos , Repetições de Microssatélites/genética , Variação Genética/genética
8.
Genes (Basel) ; 13(11)2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36421789

RESUMO

The in vitro culture technique can be used for micropropagation of medicinal plants as well as for creating genotypes with an improved profile of phytochemical compounds. For this purpose, somaclonal variability may be used for the induction of genetic diversity among regenerants. The paper presents a protocol for obtaining Scutellaria baicalensis regenerants by indirect organogenesis and the assessment of their genetic variability with the use of start codon-targeted markers. The most intense process of indirect shoot organogenesis was observed on Murashige and Skoog medium supplemented with kinetin and 6-Benzylaminopurine (0.5 mg × dm-3 each)-7.4 shoot per explant on average. The callogenesis process occurred on the medium supplemented with TDZ, while the medium supplemented with GA3 allowed for direct shoot organogenesis and was used for the micropropagation of regenerants. In the analysis of plantlets obtained by indirect organogenesis, 11 ScoT markers generated a total of 130 amplicons, 45 of which were polymorphic. This analysis showed genetic diversity of regenerants in relation to the donor plant as well as within them, with mean similarity among the analyzed genotypes at the level of 0.90. This study confirms that the use of in vitro cultures allows for the possibility to generate genetic variability in Scutellaria baicalensis, which can be effectively revealed with the use of the SCoT marker.


Assuntos
Plantas Medicinais , Scutellaria baicalensis , Scutellaria baicalensis/genética , Plantas Medicinais/genética , Códon de Iniciação , Biomarcadores , Variação Genética/genética
9.
Braz J Biol ; 84: e264369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36287528

RESUMO

Panax vietnamensis Ha et Grushv. is a precious medicinal species native to the tropical forests of Vietnam. Due to habitat loss and over-harvesting, this species is endangered in Vietnam. To conserve the species, we investigated genetic variability and population structure using nine microsatellites for 148 individuals from seven populations across the current distribution range of P. vietnamensis in Vietnam. We determined a moderate genetic diversity within populations (HO = 0.367, HE = 0.437) and relatively low population differentiation (the Weir and Cockerham index of 0.172 and the Hedrick index of 0.254) and showed significant differentiation (P < 0.05), which suggested fragmented habitats, over-utilization and over-harvesting of P. vietnamensis. Different clustering methods revealed that individuals were grouped into two major clusters, which were associated with gene flow across the geographical range of P. vietnamensis. This study also detected that ginseng populations can have undergone a recent bottleneck. We recommend measures in future P. vietnamensis conservation and breeding programs.


Assuntos
Panax , Humanos , Panax/genética , Panax/química , Vietnã , Melhoramento Vegetal , Repetições de Microssatélites/genética , Povo Asiático , Variação Genética/genética
11.
Genet Res (Camb) ; 2022: 2409324, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528220

RESUMO

Background: Prunus salicina L. is an important fruit tree species of great economic value which is mainly distributed in the northern hemisphere. Methods: 25 samples of Prunus salicina L. were collected from 8 provinces in China, Japan, USA, and New Zealand. The genetic variations of these samples were characterized by the random amplified polymorphic DNA (RAPD) and intersimple sequence repeat (ISSR) technique, respectively, and in combination. Results: Totally, 257 RAPD bands ranging 200∼2300 bp was found, and 81.59% of these bands were polymorphic. ISSR analysis identified 179 bands ranging 300∼2500 bp, and 87.74% of the bands were polymorphic. ISSR results showed that the similarity coefficient index between samples P10 (Maihuangli in Anhui, Chin) and P13 (Longyuanqiuli in Heilongjiang, China) was lowest, while that between samples P10 (Maihuangli in Anhui, Chin) and P15 (Baili in Japan) was highest. Combined analysis of RAPD and ISSR demonstrated that the similarity coefficient index between samples P4 (Qiepili in Ningbo, Zhejiang, China) and P13 (Longyuanqiuli in Heilongjiang, China) was lowest, while that between samples P19 (Laroda in USA) and P20 (Red heart in USA) was highest. Conclusion: RAPD combined with ISSR analysis can be used for genetic characterization of Prunus L. species.


Assuntos
Prunus domestica , DNA , Marcadores Genéticos , Variação Genética/genética , Repetições de Microssatélites , Filogenia , Prunus domestica/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico/métodos
12.
Mol Biol Rep ; 49(6): 5511-5520, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35484441

RESUMO

BACKGROUND: Onion is an economically important vegetable cultivated worldwide on a large scale. Liberal exchange of germplasm and frequent selection caused narrow genetic diversity in most crops, including onion. Thus, it is essential to estimate and understand genetic diversity before launching of any breeding program. The current study was conducted to explore genetic diversity among 39 short-day onion genotypes (indigenous and exotic). METHODS AND RESULTS: All the genotypes were evaluated for various phenotypic traits by using single nucleotide polymorphism (SNP) genotyping based on KASPar assays. Principal component analysis (PCA) was performed to determine the variability among genotypes. The four principal components with eigenvalue greater than 1 accounted for 67.5656% variability for quantitative traits, whereas first five principal components with eigenvalue greater than 0.7 accounted for 86.24% variation among the genotypes for qualitative traits. The principal component analysis identified diverse traits including bulb weight, bulb diameter, plant height, number of survived plants and vitamin C. These traits were further analyzed through ANOVA (Analysis of Variance) following augmented block design to describe genotypic variability for selected traits. Onion genotypes showed significant variation for bulb weight, bulb diameter and Vitamin C. Genotypic clustering based on PCA showed that 15 indigenous genotypes were clustered with exotic genotypes (14) while remaining indigenous genotypes (10) were distant. A total of 30 SNPs were used for assessment of genetic diversity out of these, 24 SNPs were detected with polymorphic loci (0.8%, heterozygosity), while only six markers were with monomorphic sites (0.2% heterozygosity). Subsequently, population structure analysis revealed three different populations indicating significant variability. CONCLUSION: Conclusively, a significant similarity between exotic and a group of indigenous genotypes indicates direct adoption of exotic genotypes or their sister lines. A further broadening of the genetic base is required and could be done by crossing distant genotypes.


Assuntos
Cebolas , Polimorfismo de Nucleotídeo Único , Ácido Ascórbico , Variação Genética/genética , Genótipo , Cebolas/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética
13.
Mol Biol Rep ; 49(2): 1181-1189, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34981338

RESUMO

BACKGROUND: Salvia macrosiphon is an aromatic perennial species of Lamiaceae family that grows naturally in different parts of Iran. This herb is widely used in folk and modern medicine. Although in Flora Iranica and Flora of Iran, no infraspecific taxonomic rank has been detected for S. macrosiphon, some infraspecific taxonomic ranks have been reported. In the current study, we evaluated the genetic diversity and structure of 11 populations of this species to detect inter and intrapopulation genetic diversity and to survey the possibility of infraspecific taxonomic ranks in this species. METHODS AND RESULTS: We utilized the modified C-TAB protocol for DNA extraction and amplified the genomes using several SCoT molecular markers. We calculated of genetic diversity and polymorphism parameters using GenAlex 6.4, Geno-Dive ver.2, PopGene, PopART and Structure 2.3.4. The parameters of genetic polymorphism differed between the populations. Moreover, a low rate of gene flow supported a moderate level of population's genetic diversity and differentiation. According to haplotypes network (TCS) analysis, a high level of genetic mutation has occurred among the individuals of some populations leading to high intrapopulation diversity. On the basis of structure analysis and Nei's genetic distance, the examined populations were classified into four genotypes. CONCLUSIONS: The clustering pattern of the populations in each group was not related to geographical distance or phytogeography. It seems that the wide geographic distribution, a small gene flow rate and the occurrence of a high level of genetic mutation lead to infraspecific genetic differentiation in the species and we suppose some infraspecific ranks exist for it.


Assuntos
Marcadores Genéticos/genética , Salvia/genética , Classificação/métodos , Análise por Conglomerados , Fluxo Gênico/genética , Variação Genética/genética , Genótipo , Geografia , Irã (Geográfico) , Lamiaceae/genética , Repetições de Microssatélites/genética , Filogenia , Polimorfismo Genético/genética , Salvia/metabolismo
14.
Biomed Pharmacother ; 146: 112550, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34959116

RESUMO

Coronavirus is a family of viruses that can cause diseases such as the common cold, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). The universal outbreak of coronavirus disease 2019 (COVID-19) caused by SARS coronaviruses 2 (SARS-CoV-2) has become a global pandemic. The ß-Coronaviruses, which caused SARS-CoV-2 (COVID-19), have spread in more than 213 countries, infected over 81 million people, and caused more than 1.79 million deaths. COVID-19 symptoms vary from mild fever, flu to severe pneumonia in severely ill patients. Difficult breathing, acute respiratory distress syndrome (ARDS), acute kidney disease, liver damage, and multi-organ failure ultimately lead to death. Researchers are working on different pre-clinical and clinical trials to prevent this deadly pandemic by developing new vaccines. Along with vaccines, therapeutic intervention is an integral part of healthcare response to address the ongoing threat posed by COVID-19. Despite the global efforts to understand and fight against COVID-19, many challenges need to be addressed. This article summarizes the current pandemic, different strains of SARS-CoV-2, etiology, complexities, surviving medications of COVID-19, and so far, vaccination for the treatment of COVID-19.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/genética , Variação Genética/genética , SARS-CoV-2/genética , Vacinação/tendências , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/genética , Antivirais/administração & dosagem , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Surtos de Doenças/prevenção & controle , Humanos , Medicina Tradicional Chinesa/tendências , Vacinação/métodos , Tratamento Farmacológico da COVID-19
15.
Cienc. tecnol. salud ; 9(2): 166-181, 2022. il 27 c
Artigo em Espanhol | LILACS, DIGIUSAC, LIGCSA | ID: biblio-1415649

RESUMO

En Guatemala, la producción del cultivo de papa se ve afectada por los nematodos Globodera rostochiensis y Globo-dera pallida. La capacidad de ambas especies para formar quistes complica su control y provoca el aumento de sus poblaciones. En Guatemala se reporta la presencia de ambas especies de nematodos por identificación morfológica, sin embargo, no se ha realizado una confirmación molecular. Este es el primer estudio para validar la presencia de ambas especies de nematodos por PCR múltiple y la determinación de la diversidad y estructura genética de las poblaciones utilizando marcadores moleculares. Se realizaron muestreos en cuatro departamentos productores de papa del país. La identificación por PCR se realizó con el cebador común ITS5 y los cebadores PITSr3 específico para G. rostochiensisy PITSp4 para G. pallida. La caracterización molecular se realizó con el marcador AFLP. Se confirmó la presencia de las dos especies de nematodos en los cuatro departamentos. Los índices de diversidad Shannon y heterocigosidad esperada revelaron mayor diversidad genética en G. rostochiensis (H = 0.311, He = 0.301) que en G. pallida (H = 0.035, He = 0.223). Los métodos NJ, DAPC y PCA exhibieron una débil estructura entre las poblaciones de ambas especies de nematodos. Los resultados sugieren un patrón de dispersión desde Quetzaltenango hacia el resto del país, atribuido a la comercialización de semilla contaminada con nematodos. Se sugiere promover programas de socialización sobre los beneficios del uso de semilla certificada, además de constantes monitoreos moleculares para un diagnóstico certero de ambas especies de nematodos.


In Guatemala, potato crop production is affected by the nematodes Globodera rostochiensis and Globodera pallida. The ability of both species to form cysts complicates their control and causes an increase in their populations. In Guatemala, both species of nematodes have been reported by morphological identification; however, molecular confirmation has not been carried out. It is the first study to validate the presence of both nematode species by multiplex PCR and determine the diversity and genetic structure of the populations using molecular markers. Sampling was carried out in four pota-to-producing departments of the country. PCR identification was performed with the common primer ITS5 and the primers PITSr3 specific for G. rostochiensis and PITSp4 for G. pallida. We performed molecular characterization with the AFLP marker. We confirmed the presence of the two nematode species in the four departments. Shannon diversity and expected heterozygosity indices revealed higher genetic diversity in G. rostochiensis (H = 0.311, He = 0.301) than in G. pallida (H = 0.035, He = 0.223). The NJ, DAPC, and PCA methods exhibited weak structure among populations of both nematode species. The results suggest a dispersal pattern from Quetzaltenango to the rest of the country, attributed to the commer-cialization of seed contaminated with nematodes. We suggest promoting socialization programs on the benefits of using certified seeds and constant molecular monitoring for an accurate diagnosis of both species of nematodes.


Assuntos
Variação Genética/genética , Solanum tuberosum/parasitologia , Reação em Cadeia da Polimerase Multiplex/métodos , Nematoides/genética , Parasitos/parasitologia , Doenças das Plantas/parasitologia , Sementes/parasitologia , Estruturas Genéticas/genética , Guatemala , Nematoides/patogenicidade
17.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769022

RESUMO

Selenium is incorporated into selenoproteins as the 21st amino acid selenocysteine (Sec). There are 25 selenoproteins encoded in the human genome, and their synthesis requires a dedicated machinery. Most selenoproteins are oxidoreductases with important functions in human health. A number of disorders have been associated with deficiency of selenoproteins, caused by mutations in selenoprotein genes or Sec machinery genes. We discuss mutations that are known to cause disease in humans and report their allele frequencies in the general population. The occurrence of protein-truncating variants in the same genes is also presented. We provide an overview of pathogenic variants in selenoproteins genes from a population genomics perspective.


Assuntos
Variação Genética/genética , Selenocisteína/genética , Selenoproteínas/genética , Alelos , Animais , Genoma Humano/genética , Humanos , Selênio/metabolismo
18.
Food Funct ; 12(22): 11077-11105, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34672309

RESUMO

Mouse models are an essential tool in different areas of research, including nutrition and phytochemical research. Traditional inbred mouse models have allowed the discovery of therapeutical targets and mechanisms of action and expanded our knowledge of health and disease. However, these models lack the genetic variability typically found in human populations, which hinders the translatability of the results found in mice to humans. The development of genetically diverse mouse models, such as the collaborative cross (CC) or the diversity outbred (DO) models, has been a useful tool to overcome this obstacle in many fields, such as cancer, immunology and toxicology. However, these tools have not yet been widely adopted in the field of phytochemical research. As demonstrated in other disciplines, use of CC and DO models has the potential to provide invaluable insights for translation of phytochemicals from rodents to humans, which are desperately needed given the challenges and numerous failed clinical trials in this field. These models may prove informative for personalized use of phytochemicals in humans, including: predicting interindividual variability in phytochemical bioavailability and efficacy, identifying genetic loci or genes governing response to phytochemicals, identifying phytochemical mechanisms of action and therapeutic targets, and understanding the impact of genetic variability on individual response to phytochemicals. Such insights would prove invaluable for personalized implementation of phytochemicals in humans. This review will focus on the current work performed with genetically diverse mouse populations, and the research opportunities and advantages that these models can offer to phytochemical research.


Assuntos
Modelos Animais de Doenças , Variação Genética/genética , Camundongos Endogâmicos/genética , Fenômenos Fisiológicos da Nutrição , Compostos Fitoquímicos , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Fenômenos Fisiológicos da Nutrição/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição/genética , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/farmacologia , Pesquisa Translacional Biomédica
19.
PLoS One ; 16(8): e0256457, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34449804

RESUMO

The aim of our study was to assess the importance of different Colombian bioregions in terms of the supply of useful plant species and the quality of the available distribution data. We assembled a dataset of georeferenced collection localities of all vascular plants of Colombia available from global and local online databases. We then assembled a list of species, subspecies and varieties of Colombia's useful plants and retrieved all point locality information associated with these taxa. We overlaid both datasets with a map of Colombia's bioregions to retrieve all species and useful species distribution records in each bioregion. To assess the reliability of our estimates of species numbers, we identified information gaps, in geographic and environmental space, by estimating their completeness and coverage. Our results confirmed that Colombia's third largest bioregion, the Andean moist forest followed by the Amazon, Pacific, Llanos and Caribbean moist forests contained the largest numbers of useful plant species. Medicinal use was the most common useful attribute across all bioregions, followed by Materials, Environmental uses, and Human Food. In all bioregions, except for the Andean páramo, the proportion of well-surveyed 10×10 km grid cells (with ≥ 25 observation records of useful plants) was below 50% of the total number of surveyed cells. Poor survey coverage was observed in the three dry bioregions: Caribbean deserts and xeric shrublands, and Llanos and Caribbean dry forests. This suggests that additional primary data is needed. We document knowledge gaps that will hinder the incorporation of useful plants into Colombia's stated plans for a bioeconomy and their sustainable management. In particular, future research should focus on the generation of additional primary data on the distribution of useful plants in the Amazon and Llanos (Orinoquia) regions where both survey completeness and coverage appeared to be less adequate compared with other regions.


Assuntos
Florestas , Variação Genética/genética , Plantas Medicinais/fisiologia , Plantas/classificação , Região do Caribe , Colômbia , Variação Genética/fisiologia , Humanos , Plantas/genética , Plantas Medicinais/classificação
20.
PLoS One ; 16(8): e0255776, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34388195

RESUMO

The estimation of recent gene flow rates among vast and often weakly genetically differentiated tree populations remains a great challenge. Yet, empirical information would help understanding the interaction between gene flow and local adaptation in present-day non-equilibrium forests. We investigate here recent gene flow rates between two large native Scots pine (Pinus sylvestris L.) populations in central Iberian Peninsula (Spain), which grow on contrasting edaphic conditions six kilometers apart from each other and show substantial quantitative trait divergence in common garden experiments. Using a sample of 1,200 adult and offspring chloroplast-microsatellite haplotypes and a Bayesian inference model, we estimated substantial male gametic gene flow rates (8 and 21%) between the two natural populations, and even greater estimated immigration rates (42 and 64%) from nearby plantations into the two natural populations. Our results suggest that local pollen shedding within large tree populations does not preclude long-distance pollen immigration from large external sources, supporting the role of gene flow as a homogenizing evolutionary force contributing to low molecular genetic differentiation among populations of widely distributed wind-pollinated species. Our results also indicate the high potential for reproductive connectivity in large fragmented populations of wind-pollinated trees, and draw attention to a potential scenario of adaptive genetic divergence in quantitative traits under high gene flow.


Assuntos
Fluxo Gênico/genética , Genética Populacional , Pinus sylvestris/genética , Pólen/genética , Florestas , Variação Genética/genética , Haplótipos/genética , Polinização/genética , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA