Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33558236

RESUMO

The number and activity of Cav1.2 channels in the cardiomyocyte sarcolemma tunes the magnitude of Ca2+-induced Ca2+ release and myocardial contraction. ß-Adrenergic receptor (ßAR) activation stimulates sarcolemmal insertion of CaV1.2. This supplements the preexisting sarcolemmal CaV1.2 population, forming large "superclusters" wherein neighboring channels undergo enhanced cooperative-gating behavior, amplifying Ca2+ influx and myocardial contractility. Here, we determine this stimulated insertion is fueled by an internal reserve of early and recycling endosome-localized, presynthesized CaV1.2 channels. ßAR-activation decreased CaV1.2/endosome colocalization in ventricular myocytes, as it triggered "emptying" of endosomal CaV1.2 cargo into the t-tubule sarcolemma. We examined the rapid dynamics of this stimulated insertion process with live-myocyte imaging of channel trafficking, and discovered that CaV1.2 are often inserted into the sarcolemma as preformed, multichannel clusters. Similarly, entire clusters were removed from the sarcolemma during endocytosis, while in other cases, a more incremental process suggested removal of individual channels. The amplitude of the stimulated insertion response was doubled by coexpression of constitutively active Rab4a, halved by coexpression of dominant-negative Rab11a, and abolished by coexpression of dominant-negative mutant Rab4a. In ventricular myocytes, ßAR-stimulated recycling of CaV1.2 was diminished by both nocodazole and latrunculin-A, suggesting an essential role of the cytoskeleton in this process. Functionally, cytoskeletal disruptors prevented ßAR-activated Ca2+ current augmentation. Moreover, ßAR-regulation of CaV1.2 was abolished when recycling was halted by coapplication of nocodazole and latrunculin-A. These findings reveal that ßAR-stimulation triggers an on-demand boost in sarcolemmal CaV1.2 abundance via targeted Rab4a- and Rab11a-dependent insertion of channels that is essential for ßAR-regulation of cardiac CaV1.2.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Sarcolema/metabolismo , Proteínas rab4 de Ligação ao GTP/metabolismo , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular , Células Cultivadas , Endossomos/metabolismo , Feminino , Ventrículos do Coração/citologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Nocodazol/farmacologia , Transporte Proteico , Tiazolidinas/farmacologia
2.
Toxicol Appl Pharmacol ; 356: 182-190, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30125596

RESUMO

Taurine-magnesium coordination compound (TMCC) exhibits antiarrhythmic effects in cesium-chloride-and ouabain-induced arrhythmias; however, the mechanism underlying these effects on arrhythmia remains poorly understood. Here, we investigated the effects of TMCC on aconitine-induced arrhythmia in vivo and the electrophysiological effects of this compound in rat ventricular myocytes in vitro. Aconitine was used to induce arrhythmias in rats, and the dosages required to produce ventricular premature contraction (VPC), ventricular tachycardia (VT), ventricular fibrillation (VF), and cardiac arrest (CA) were recorded. Additionally, the sodium current (INa) and L-type calcium current (ICa,L) were analyzed in normal and aconitine-treated ventricular myocytes using whole-cell patch-clamp recording. In vivo, intravenous administration of TMCC produced marked antiarrhythmic effects, as indicated by the increased dose of aconitine required to induce VPC, VT, VF, and CA. Moreover, this effect was abolished by administration of sodium channel opener veratridine and calcium channel agonist Bay K8644. In vitro, TMCC inhibited aconitine-induced increases in INa and ICa,L. These results revealed that TMCC inhibited aconitine-induced arrhythmias through effects on INa and ICa,L.


Assuntos
Aconitina , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/tratamento farmacológico , Canais Iônicos/efeitos dos fármacos , Compostos de Magnésio/uso terapêutico , Taurina/uso terapêutico , Animais , Canais de Cálcio Tipo L/efeitos dos fármacos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Parada Cardíaca/induzido quimicamente , Parada Cardíaca/prevenção & controle , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Canais de Sódio/efeitos dos fármacos
3.
J Physiol ; 596(17): 3841-3858, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29989169

RESUMO

KEY POINTS: Although optogenetics has clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies lack the capability to react acutely to ongoing cardiac wave dynamics. Here, we developed an all-optical platform to monitor and control electrical activity in real-time. The methodology was applied to restore normal electrical activity after atrioventricular block and to manipulate the intraventricular propagation of the electrical wavefront. The closed-loop approach was also applied to simulate a re-entrant circuit across the ventricle. The development of this innovative optical methodology provides the first proof-of-concept that a real-time all-optical stimulation can control cardiac rhythm in normal and abnormal conditions. ABSTRACT: Optogenetics has provided new insights in cardiovascular research, leading to new methods for cardiac pacing, resynchronization therapy and cardioversion. Although these interventions have clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies do not take into account cardiac wave dynamics in real time. Here, we developed an all-optical platform complemented by integrated, newly developed software to monitor and control electrical activity in intact mouse hearts. The system combined a wide-field mesoscope with a digital projector for optogenetic activation. Cardiac functionality could be manipulated either in free-run mode with submillisecond temporal resolution or in a closed-loop fashion: a tailored hardware and software platform allowed real-time intervention capable of reacting within 2 ms. The methodology was applied to restore normal electrical activity after atrioventricular block, by triggering the ventricle in response to optically mapped atrial activity with appropriate timing. Real-time intraventricular manipulation of the propagating electrical wavefront was also demonstrated, opening the prospect for real-time resynchronization therapy and cardiac defibrillation. Furthermore, the closed-loop approach was applied to simulate a re-entrant circuit across the ventricle demonstrating the capability of our system to manipulate heart conduction with high versatility even in arrhythmogenic conditions. The development of this innovative optical methodology provides the first proof-of-concept that a real-time optically based stimulation can control cardiac rhythm in normal and abnormal conditions, promising a new approach for the investigation of the (patho)physiology of the heart.


Assuntos
Arritmias Cardíacas/terapia , Bloqueio Atrioventricular/terapia , Terapia por Estimulação Elétrica/métodos , Átrios do Coração/citologia , Ventrículos do Coração/citologia , Optogenética/instrumentação , Potenciais de Ação , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Bloqueio Atrioventricular/genética , Bloqueio Atrioventricular/fisiopatologia , Técnicas Eletrofisiológicas Cardíacas , Átrios do Coração/fisiopatologia , Átrios do Coração/efeitos da radiação , Ventrículos do Coração/fisiopatologia , Ventrículos do Coração/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Imagem Óptica
4.
JCI Insight ; 3(12)2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29925689

RESUMO

Generation of homogeneous populations of subtype-specific cardiomyocytes (CMs) derived from human induced pluripotent stem cells (iPSCs) and their comprehensive phenotyping is crucial for a better understanding of the subtype-related disease mechanisms and as tools for the development of chamber-specific drugs. The goals of this study were to apply a simple and efficient method for differentiation of iPSCs into defined functional CM subtypes in feeder-free conditions and to obtain a comprehensive understanding of the molecular, cell biological, and functional properties of atrial and ventricular iPSC-CMs on both the single-cell and engineered heart muscle (EHM) level. By a stage-specific activation of retinoic acid signaling in monolayer-based and well-defined culture, we showed that cardiac progenitors can be directed towards a highly homogeneous population of atrial CMs. By combining the transcriptome and proteome profiling of the iPSC-CM subtypes with functional characterizations via optical action potential and calcium imaging, and with contractile analyses in EHM, we demonstrated that atrial and ventricular iPSC-CMs and -EHM highly correspond to the atrial and ventricular heart muscle, respectively. This study provides a comprehensive understanding of the molecular and functional identities characteristic of atrial and ventricular iPSC-CMs and -EHM and supports their suitability in disease modeling and chamber-specific drug screening.


Assuntos
Ventrículos do Coração/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Cálcio , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Diagnóstico por Imagem/métodos , Avaliação Pré-Clínica de Medicamentos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Marcação por Isótopo , Miocárdio , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteoma , Transcriptoma , Tretinoína
5.
Toxicol Lett ; 294: 61-72, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29758359

RESUMO

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are emerging tools for applications such as drug discovery and screening for pro-arrhythmogenicity and cardiotoxicity as leading causes for drug attrition. Understanding the electrophysiology (EP) of hPSC-CMs is essential but conventional manual patch-clamping is highly laborious and low-throughput. Here we adapted hPSC-CMs derived from two human embryonic stem cell (hESC) lines, HES2 and H7, for a 16-channel automated planar-recording approach for single-cell EP characterization. Automated current- and voltage-clamping, with an overall success rate of 55.0 ±â€¯11.3%, indicated that 90% of hPSC-CMs displayed ventricular-like action potential (AP) and the ventricular cardiomyocytes (VCMs) derived from the two hESC lines expressed similar levels of INa, ICaL, Ikr and If and similarly lacked Ito and IK1. These well-characterized hPSC-VCMs could also be readily adapted for automated assays of pro-arrhythmic drug screening. As an example, we showed that flecainide (FLE) induced INa blockade, leftward steady-state inactivation shift, slowed recovery from inactivation in our hPSC-VCMs. Since single-cell EP assay is insufficient to predict drug-induced reentrant arrhythmias, hPSC-VCMs were further reassembled into 2D human ventricular cardiac monolayers (hvCMLs) for multi-cellular electrophysiological assessments. Indeed, FLE significantly slowed the conduction velocity while causing AP prolongation. Our RNA-seq data suggested that cell-cell interaction enhanced the maturity of hPSC-VCMs. Taken collectively, a combinatorial approach using single-cell EP and hvCMLs is needed to comprehensively assess drug-induced arrhythmogenicity.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Flecainida/efeitos adversos , Ventrículos do Coração/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Miócitos Cardíacos/efeitos dos fármacos , Bloqueadores do Canal de Sódio Disparado por Voltagem/efeitos adversos , Canais de Sódio Disparados por Voltagem/metabolismo , Potenciais de Ação/efeitos dos fármacos , Automação Laboratorial , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Estudos de Viabilidade , Sistema de Condução Cardíaco/citologia , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/metabolismo , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Reprodutibilidade dos Testes , Análise de Célula Única , Canais de Sódio Disparados por Voltagem/química
6.
Sci Rep ; 7: 42209, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165052

RESUMO

Light-sheet fluorescence microscopy (LSFM) serves to advance developmental research and regenerative medicine. Coupled with the paralleled advances in fluorescence-friendly tissue clearing technique, our cardiac LSFM enables dual-sided illumination to rapidly uncover the architecture of murine hearts over 10 by 10 by 10 mm3 in volume; thereby allowing for localizing progenitor differentiation to the cardiomyocyte lineage and AAV9-mediated expression of exogenous transmembrane potassium channels with high contrast and resolution. Without the steps of stitching image columns, pivoting the light-sheet and sectioning the heart mechanically, we establish a holistic strategy for 3-dimentional reconstruction of the "digital murine heart" to assess aberrant cardiac structures as well as the spatial distribution of the cardiac lineages in neonates and ion-channels in adults.


Assuntos
Imageamento Tridimensional , Miocárdio/citologia , Proteínas/metabolismo , Animais , Animais Recém-Nascidos , Calibragem , Linhagem da Célula , Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Ventrículos do Coração/citologia , Camundongos , Microscopia de Fluorescência , Canais de Potássio/metabolismo
7.
Zhongguo Zhong Yao Za Zhi ; 42(24): 4864-4869, 2017 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-29493159

RESUMO

To investigate the effects of isovitexin Ⅳ on transient outward potassium current in rat ventricular myocytes. In this study, MTT assay was used to investigate the safe range of isovitexin. The results showed that the IC50 of the drug was in the range of 10-30 µmol•L⁻¹, and the drug concentration of 1-3 µmol•L⁻¹ for the patch clamp test was within the safe range. In addition, the single ventricular myocytes were obtained by single-enzymatic hydrolysis through aortic retrograde perfusion. The transient outward potassium current (Ito) of rat ventricular myocytes was guided and measured by whole-cell patch-clamp technique and the changes of current characteristics were recorded after isovite was applied. When the concentration of IV was less than 0.1 µmol•L⁻¹, there was no significant effect on Ito. However, with the increase in the concentration of IV (≥0.3 µmol•L⁻¹), the peak of Ito was decreased gradually, from (32.32±2.9) pA/pF to (25.83±4.3) pA/pF, 1 µmol•L⁻¹ IV and (19.51±3.5) pA/pF, 3 µmol•L⁻¹ IV respectively, with an inhibition effect in a concentration-dependent manner. In the range of 1-3 µmol•L⁻¹, IV down-regulated the I-V curve of Ito significantly. The activation curve showed that IV can enable the maximum half activation potential (V1/2) to move to the positive direction, and the V1/2 was increased from (19.59±1.6) mV to (22.81±1.7) mV and (28.86±1.4) mV at concentration of 1, 3 µmol•L⁻¹, meanwhile the activation curve moved to the right. However, the maximum half inactivating potential (V1/2) of the steady-state inactivation curve of Ito was significantly decreased from (-51.43±0.99) mV to (-61.81±1.3) mV with concentration of 1 µmol•L⁻¹ and (-71.50±1.4) mV with concentration of 3 µmol•L⁻¹. The inactivation time constant of recovery from inactivation (τ) was up-regulated significantly from (94.89±0.73) ms to (118.5±1.5) ms and (162.4±1.4) ms at concentration of 1, 3 µmol•L⁻¹ respectively. Meanwhile IV could enable the inactivation recovery curve to move to the right, which suggested that it can prolong the recovery time from inactivation of the transient outward potassium channel. In conclusion, isovitexin had a high inhibitory effect on Ito in rat ventricular myocytes.


Assuntos
Apigenina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Canais de Potássio/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Ventrículos do Coração/citologia , Técnicas de Patch-Clamp , Ratos
8.
Sci Rep ; 6: 36803, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27833092

RESUMO

Molecular inotropy refers to cardiac contractility that can be modified to affect overall heart pump performance. Here we show evidence of a new molecular pathway for positive inotropy by a cardiac-restricted microRNA (miR). We report enhanced cardiac myocyte performance by acute titration of cardiac myosin-embedded miR-208a. The observed positive effect was independent of host gene myosin effects with evidence of negative regulation of cAMP-specific 3',5'-cyclic phosphodiesterase 4D (PDE4D) and the regulatory subunit of PKA (PRKAR1α) content culminating in PKA-site dependent phosphorylation of cardiac troponin I (cTnI) and phospholamban (PLN). Further, acute inhibition of miR-208a in adult myocytes in vitro increased PDE4D expression causing reduced isoproterenol-mediated phosphorylation of cTnI and PLN. Next, rAAV-mediated miR-208a gene delivery enhanced heart contractility and relaxation parameters in vivo. Finally, acute inducible increases in cardiac miR-208a in vivo reduced PDE4D and PRKAR1α, with evidence of increased content of several complementary miRs harboring the PDE4D recognition sequence. Physiologically, this resulted in significant cardiac cTnI and PLN phosphorylation and improved heart performance in vivo. As phosphorylation of cTnI and PLN is critical to myocyte function, titration of miR-208a represents a potential new mechanism to enhance myocardial performance via the PDE4D/PRKAR1α/PKA phosphoprotein signaling pathway.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , MicroRNAs/genética , Contração Miocárdica , Transdução de Sinais , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Sítios de Ligação , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Expressão Gênica , Ventrículos do Coração/citologia , Camundongos , MicroRNAs/metabolismo , Miócitos Cardíacos/fisiologia , Fosfoproteínas/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Interferência de RNA , Ratos , Troponina I/metabolismo
9.
Phytother Res ; 30(3): 510-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26762248

RESUMO

Tannic acid (TA) is a group of water-soluble polyphenolic compounds that occur mainly in plant-derived feeds, food grains and fruits. Many studies have explored its biomedical properties, such as anticancer, antibacterial, antimutagenic, antioxidant, antidiabetic, antiinflammatory and antihypertensive activities. However, the effects of TA on the L-type Ca(2+) current (ICa-L) of cardiomyocytes remain undefined. The present study examined the effects of TA on ICa-L using the whole-cell patch-clamp technique and on intracellular Ca(2+) handling and cell contractility in rat ventricular myocytes with the aid of a video-based edge detection system. Exposure to TA resulted in a concentration- and voltage-dependent blockade of ICa-L, with the half maximal inhibitory concentration of 1.69 µM and the maximal inhibitory effect of 46.15%. Moreover, TA significantly inhibited the amplitude of myocyte shortening and peak value of Ca(2+) transient and increased the time to 10% of the peak. These findings provide new experimental evidence for the cellular mechanism of action of TA and may help to expand clinical treatments for cardiovascular disease.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Cálcio/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Taninos/farmacologia , Animais , Canais de Cálcio Tipo L/metabolismo , Ventrículos do Coração/citologia , Técnicas de Patch-Clamp , Extratos Vegetais/farmacologia , Ratos
10.
JACC Clin Electrophysiol ; 2(7): 784-789, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-29759761

RESUMO

OBJECTIVES: The aim of this study was to determine the in vitro electrophysiological properties of loperamide. The authors' hypothesis was that loperamide is a potent blocker of the current carried by the human ether-à-go-go-related gene (hERG) potassium channel. BACKGROUND: Loperamide is a peripherally-acting µ-opioid agonist available worldwide as an over-the-counter treatment for diarrhea. Like most opioids, it is not currently known to be proarrhythmic. Recent cases of torsade de pointes in association with high-dose loperamide raise concern given its structural similarity to methadone, another synthetic opioid with an established arrhythmia risk. METHODS: Effects of loperamide on blockade of the hERG potassium channel ion current were assessed in Chinese Hamster Ovary (CHO) cells stably expressing hERG to elucidate current amplitude and kinetics. The concentration required to produce 50% inhibition of hERG current was assessed from the amplitude of tail currents and the impact on action potential duration was assessed in isolated swine ventricular cardiomyocytes. RESULTS: The 50% inhibitory concentration for loperamide inhibition of hERG ionic tail currents was approximately 40 nmol/l. In current-voltage measurements, loperamide reduced steady and tail currents and shifted the current activation to more negative potentials. Loperamide (10 nmol/l) also increased the action potential duration, assessed at 90% of repolarization, in ventricular myocytes by 16.4 ± 1.7% (n = 6; p < 0.004). The maximum rate of rise of phase 0 of the action potential, however, was not significantly altered at any tested concentration of loperamide. CONCLUSIONS: Loperamide is a potent hERG channel blocker. It significantly prolongs the action potential duration and suggests a causal association between loperamide and recent clinical cases of torsade de pointes.


Assuntos
Antidiarreicos/farmacologia , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Loperamida/farmacologia , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Ventrículos do Coração/citologia , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Suínos
11.
J Physiol ; 594(9): 2537-53, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26563830

RESUMO

KEY POINTS: Beat-to-beat alternation (alternans) of the cardiac action potential duration is known to precipitate life-threatening arrhythmias and can be driven by the kinetics of voltage-gated membrane currents or by instabilities in intracellular calcium fluxes. To prevent alternans and associated arrhythmias, suitable markers must be developed to quantify the susceptibility to alternans; previous theoretical studies showed that the eigenvalue of the alternating eigenmode represents an ideal marker of alternans. Using rabbit ventricular myocytes, we show that this eigenvalue can be estimated in practice by pacing these cells at intervals varying stochastically. We also show that stochastic pacing permits the estimation of further markers distinguishing between voltage-driven and calcium-driven alternans. Our study opens the perspective to use stochastic pacing during clinical investigations and in patients with implanted pacing devices to determine the susceptibility to, and the type of alternans, which are both important to guide preventive or therapeutic measures. ABSTRACT: Alternans of the cardiac action potential (AP) duration (APD) is a well-known arrhythmogenic mechanism. APD depends on several preceding diastolic intervals (DIs) and APDs, which complicates the prediction of alternans. Previous theoretical studies pinpointed a marker called λalt that directly quantifies how an alternating perturbation persists over successive APs. When the propensity to alternans increases, λalt decreases from 0 to -1. Our aim was to quantify λalt experimentally using stochastic pacing and to examine whether stochastic pacing allows discriminating between voltage-driven and Ca(2+) -driven alternans. APs were recorded in rabbit ventricular myocytes paced at cycle lengths (CLs) decreasing progressively and incorporating stochastic variations. Fitting APD with a function of two previous APDs and CLs permitted us to estimate λalt along with additional markers characterizing whether the dependence of APD on previous DIs or CLs is strong (typical for voltage-driven alternans) or weak (Ca(2+) -driven alternans). During the recordings, λalt gradually decreased from around 0 towards -1. Intermittent alternans appeared when λalt reached -0.8 and was followed by sustained alternans. The additional markers detected that alternans was Ca(2+) driven in control experiments and voltage driven in the presence of ryanodine. This distinction could be made even before alternans was manifest (specificity/sensitivity >80% for -0.4 > λalt  > -0.5). These observations were confirmed in a mathematical model of a rabbit ventricular myocyte. In conclusion, stochastic pacing allows the practical estimation of λalt to reveal the onset of alternans and distinguishes between voltage-driven and Ca(2+) -driven mechanisms, which is important since these two mechanisms may precipitate arrhythmias in different manners.


Assuntos
Técnicas Eletrofisiológicas Cardíacas , Miócitos Cardíacos/fisiologia , Potenciais de Ação , Animais , Ventrículos do Coração/citologia , Masculino , Modelos Biológicos , Coelhos
12.
Eur J Pharmacol ; 760: 27-35, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25891370

RESUMO

Astragaloside IV (AS-IV) is one of the main active ingredients of Astragalus membranaceus. This study is aimed to investigate AS-IV׳s effects on Ca(2+) channel activity of single cardiomyocytes and single Ca(2+) channels. Whole-cell Ca(2+) currents in freshly dissociated cardiomyocytes were measured using the whole-cell patch-clamp technique. Single Ca(2+) channel currents were examined in cell-attached patches and inside-out patches. In the whole-cell recording, AS-IV reduced the amplitude of L-type Ca(2+) currents (ICaL) in a concentration-dependent manner. Although AS-IV did not alter the steady-state activation curves, the voltage dependence of the current inactivation curves was negatively shifted by AS-IV in a concentration dependent manner. Consistent with the results of the whole-cell recording, in the inside-out configuration the ensemble average of single Ba(2+) current via L-type Ca(2+) channel was dose-dependently reduced by AS-IV. The reduction of unitary Ba(2+) current at 0.1 or 1 µM AS-IV was accounted for a decrease in the channel activity (NPo). In addition to the decrease in NPo, there was a reduction of Po without a change in channel number or an apparent change in single channel current. Furthermore, we found that the open-closed kinetics of the channel were affected by AS-IV. AS-IV induced the shift of L-type Ca(2+) channels from either brief openings (mode 1) or long-lasting openings (mode 2) to no active opening (mode 0). Our results suggest that AS-IV blocks the currents through Ca(2+) channels in guinea-pig ventricular myocytes by affecting the open-closed kinetics of L-type Ca(2+) channels to inhibit the channel activities. This study could provide theoretical basis for the drug exploiting of the monomer of Astragalus membranaceus.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Medicamentos de Ervas Chinesas/farmacologia , Ativação do Canal Iônico/fisiologia , Miócitos Cardíacos/fisiologia , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Relação Dose-Resposta a Droga , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/fisiologia , Cobaias , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos
13.
Eur J Pharmacol ; 746: 186-97, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25449040

RESUMO

Recent evidence suggests that polydatin (PD), a resveratrol glucoside, may have beneficial actions on the cardiac hypertrophy. Therefore, the current study focused on the underlying mechanism of the PD anti-hypertrophic effect in cultured cardiomyocytes and in progression from cardiac hypertrophy to heart failure in vivo. Experiments were performed on cultured neonatal rat, ventricular myocytes as well as adult mice subjected to transverse aortic constriction (TAC). Treatment of cardiomyocytes with phenylephrine for three days produced a marked hypertrophic effect as evidenced by significantly increased cell surface area and atrial natriuretic peptide (ANP) protein expression. These effects were attenuated by PD in a concentration-dependent manner with a complete inhibition of hypertrophy at the concentration of 50 µM. Phenylephrine increased ROCK activity, as well as intracellular reactive oxygen species production and lipid peroxidation. The oxidizing agent DTDP similarly increased Rho kinase (ROCK) activity and induced hypertrophic remodeling. PD treatment inhibited phenylephrine-induced oxidative stress and consequently suppressed ROCK activation in cardiomyocytes. Hypertrophic remodeling and heart failure were demonstrated in mice subjected to 13 weeks of TAC. Upregulation of ROCK signaling pathway was also evident in TAC mice. PD treatment significantly attenuated the increased ROCK activity, associated with a markedly reduced hypertrophic response and improved cardiac function. Our results demonstrated a robust anti-hypertrophic remodeling effect of polydatin, which is mediated by inhibition of reactive oxygen species dependent ROCK activation.


Assuntos
Cardiomegalia/tratamento farmacológico , Cardiotônicos/uso terapêutico , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Glucosídeos/uso terapêutico , Insuficiência Cardíaca/prevenção & controle , Ventrículos do Coração/efeitos dos fármacos , Estilbenos/uso terapêutico , Agonistas de Receptores Adrenérgicos alfa 1/química , Agonistas de Receptores Adrenérgicos alfa 1/toxicidade , Animais , Animais Recém-Nascidos , Fator Natriurético Atrial/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Cardiotônicos/farmacologia , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Medicamentos de Ervas Chinesas/farmacocinética , Glucosídeos/farmacologia , Insuficiência Cardíaca/etiologia , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Fenilefrina/antagonistas & inibidores , Fenilefrina/toxicidade , Ratos , Estilbenos/farmacologia , Remodelação Ventricular/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo
14.
J Ethnopharmacol ; 158 Pt A: 397-403, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25446591

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia miltiorrhiza (SM, Danshen), a traditional Chinese herbal drug, has been widely used for hundreds of years to treat coronary artery disease. MATERIALS AND METHODS: We studied the effects of SM on the L-type Ca(2+) current (ICa-L) with whole-cell patch-clamp technique in rat ventricular myocytes, and its influence on Ca(2+) transient and contractility using video-based edge detection and dual excitation fluorescence photomultiplier systems as well. RESULTS: Exposure to SM solution caused a concentration- and voltage-dependent blockade of ICa-L, and the dose of SM solution (10g/l) decreased the maximal inhibitory effect of 35.2±1.2%. However, SM solution did not significantly change the current-voltage relationship or reversal potential of ICa-L, nor did it altered the activation and inactivation gating properties of cardiac Ca(2+) channels. Meanwhile, SM decreased the amplitude of myocyte shortening and the peak value of Ca(2+) transient with a significant decrease in the time to 90% of the baseline (Tr), but the time to 10% of the peak (Tp) was not dramatically prolonged. CONCLUSIONS: The results indicated that SM significantly inhibited L-type Ca(2+) channels, decreased [Ca(2+)]i and contractility in adult rat cardiac myocytes. These findings may be relevant to the cardioprotective efficacy of SM.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Cálcio/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Salvia miltiorrhiza/química , Animais , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Ventrículos do Coração/citologia , Masculino , Ratos , Ratos Sprague-Dawley , Espectrofotometria Ultravioleta
15.
Prog Biophys Mol Biol ; 116(1): 11-24, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25192800

RESUMO

It has long been suggested that the Ca(2+)-mechanisms are largely involved in generating the early afterdepolarization (EAD) as well as the delayed afterdepolarization (DAD). This view was examined in a quantitative manner by applying the lead potential analysis to a new human ventricular cell model. In this ventricular cell model, the tight coupled LCC-RyR model (CaRU) based on local control theory (Hinch et al. 2004) and ion channel models mostly based on human electrophysiological data were included to reproduce realistic Ca(2+) dynamics as well as the membrane excitation. Simultaneously, the Ca(2+) accumulation near the Ca(2+) releasing site was incorporated as observed in real cardiac myocytes. The maximum rate of ventricular repolarization (-1.02 mV/ms) is due to IK1 (-0.55 mV/ms) and the rest is provided nearly equally by INCX (-0.20 mV/ms), INaL (-0.16 mV/ms) and INaT (-0.13 mV/ms). These INaL and INaT components are due to closure of the voltage gate, which remains partially open during the plateau potential. DADs could be evoked by applying high-frequency stimulations supplemented by a partial Na(+)/K(+) pump inhibition, or by a microinjection of Ca(2+). EADs was evoked by retarding the inactivation of INaL. The lead potential (VL) analysis revealed that IK1 and IKr played the primary role to reverse the AP repolarization to depolarizing limb of EAD. ICaL and INCX amplified EAD, while the remaining currents partially antagonized dVL/dt. The maximum rate of rise of EAD was attributable to the rapid activation of both ICaL (45.5%) and INCX (54.5%).


Assuntos
Potenciais de Ação/fisiologia , Sinalização do Cálcio/fisiologia , Potenciais da Membrana/fisiologia , Modelos Cardiovasculares , Miócitos Cardíacos/fisiologia , Função Ventricular/fisiologia , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Simulação por Computador , Ventrículos do Coração/citologia , Humanos , Ativação do Canal Iônico/fisiologia , Miócitos Cardíacos/citologia
16.
Chin J Nat Med ; 12(1): 20-3, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24484592

RESUMO

AIM: To study the effects of crebanine on voltage-gated Na(+) channels in cardiac tissues. METHODS: Single ventricular myocytes were enzymatically dissociated from adult guinea-pig heart. Voltage-dependent Na(+) current was recorded using the whole cell voltage-clamp technique. RESULTS: Crebanine reversibly inhibited Na(+) current with an IC50 value of 0.283 mmol·L(-1) (95% confidence range: 0.248-0.318 mmol·L(-1)). Crebanine at 0.262 mmol·L(-1) caused a negative shift (about 12 mV) in the voltage-dependence of steady-state inactivation of Na(+) current, and retarded its recovery from inactivation, but did not affect its activation curve. CONCLUSION: In addition to blocking other voltage-gated ion channels, crebanine blocked Na(+) channels in guinea-pig ventricular myocytes. Crebanine acted as an inactivation stabilizer of Na(+) channels in cardiac tissues.


Assuntos
Aporfinas/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Feminino , Cobaias , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Masculino , Miócitos Cardíacos/metabolismo , Stephania/química
17.
Biol Pharm Bull ; 36(4): 515-21, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23546288

RESUMO

Astragaloside IV (AS-IV) is one of the main active constituents of Astragalus membranaceus, which has various actions on the cardiovascular system. However, its electrophysiological mechanisms are not clear. In the present study, we investigated the effects of AS-IV on action potentials and membrane currents using the whole-cell patch clamp technique in isolated guinea-pig ventricular myocytes. AS-IV prolonged the action potential duration (APD) at all three tested concentrations. The peak effect was achieved with 1×10(-6) M, at which concentration AS-IV significantly prolonged the APD at 95% repolarization from 313.1±38.9 to 785.3±83.7 ms. AS-IV at 1×10(-6) M also enhanced the inward rectifier K(+) currents (I(K1)) and inhibited the delayed rectifier K(+) currents (I(K)). AS-IV (1×10(-6) M) strongly depressed the peak of voltage-dependent Ca(2+) channel current (I(CaL)) from -607.3±37.5 to -321.1±38.3 pA. However, AS-IV was not found to affect the Na(+) currents. Taken together, AS-IV prolonged APD of guinea-pig ventricular myocytes, which might be explained by its inhibition of I(K). AS-IV also influences Ca(2+) signaling through suppressing ICaL.


Assuntos
Canais de Cálcio/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Canais de Potássio/fisiologia , Saponinas/farmacologia , Triterpenos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Medicamentos de Ervas Chinesas , Cobaias , Ventrículos do Coração/citologia , Técnicas In Vitro , Miócitos Cardíacos/fisiologia
18.
J Mol Cell Cardiol ; 57: 96-105, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23376036

RESUMO

Sympathetic stimulation is an important modulator of cardiac function via the classic cAMP-dependent signaling pathway, PKA. Recently, this paradigm has been challenged by the discovery of a family of guanine nucleotide exchange proteins directly activated by cAMP (Epac), acting in parallel to the classic signaling pathway. In cardiac myocytes, Epac activation is known to modulate Ca(2+) cycling yet their actions on cardiac ionic currents remain poorly characterized. This study attempts to address this paucity of information using the patch clamp technique to record action potential (AP) and ionic currents on rat ventricular myocytes. Epac was selectively activated by 8-CPT-AM (acetoxymethyl ester form of 8-CPT). AP amplitude, maximum depolarization rate and resting membrane amplitude were unaltered by 8-CPT-AM, strongly suggesting that Na(+) current and inward rectifier K(+) current are not regulated by Epac. In contrast, AP duration was significantly increased by 8-CPT-AM (prolongation of duration at 50% and 90% of repolarization by 41±10% and 43±8% respectively, n=11). L-type Ca(2+) current density was unaltered by 8-CPT-AM (n=16) so this cannot explain the action potential lengthening. However, the steady state component of K(+) current was significantly inhibited by 8-CPT-AM (-38±6%, n=15), while the transient outward K(+) current was unaffected by 8-CPT-AM. These effects were PKA-independent since they were observed in the presence of PKA inhibitor KT5720. Isoprenaline (100nM) induced a significant prolongation of AP duration, even in the presence of KT5720. This study provides the first evidence that the cAMP-binding protein Epac critically modulates cardiac AP duration by decreasing steady state K(+) current. These observations may be relevant to diseases in which Epac is upregulated, like cardiac hypertrophy.


Assuntos
Potenciais de Ação/efeitos dos fármacos , AMP Cíclico/análogos & derivados , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Miócitos Cardíacos/fisiologia , Potássio/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Sinalização do Cálcio , Carbazóis/farmacologia , Células Cultivadas , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Fatores de Troca do Nucleotídeo Guanina/agonistas , Ventrículos do Coração/citologia , Isoproterenol/farmacologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Pirróis/farmacologia , Ratos , Ratos Wistar
19.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 32(7): 944-7, 2012 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-23019953

RESUMO

OBJECTIVE: To study the effects of glycyrrhetinic acid (GA) on the sodium ion channel currents (I(Na)) of rats' ventricular myocardial cells, and to explore its anti-arrhythmic mechanisms at the ion channel level. METHODS: Single ventricular myocardial cells was isolated from SD rats. The whole cell patch clamp was used to record the effects of GA on I(Na) of rats' ventricular myocardial cells. RESULTS: GA could inhibit I(Na) of rats' ventricular myocardial cells dose-dependently. GA at 1, 5, and 10 micromol/L decreased I(Na) of rats' ventricular myocardial cells from (-4.26 +/- 0.15) nA to (-3.54 +/- 0.10) nA, (-2.19 +/- 0.09) nA, and (-1.25 +/- 0.08) nA, respectively. GA at 1, 5, and 10 micromol/L inhibited I(Na) by 16.08% +/- 2.3%, 50.82% +/- 3.56%, and 75.98% +/- 5.12%, showing statistical difference when compared with the control group (P < 0.05). GA at 10 micromol/L shifted I(Na) current-voltage curve more positively, but the activation potential and the peak potential were not changed. CONCLUSION: GA inhibited the I(Na) of rats' ventricular myocardial cells dose-dependently, which was possibly associated with its antiarrhythmia effects.


Assuntos
Ácido Glicirretínico/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Canais de Sódio/fisiologia , Animais , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Canais de Sódio/efeitos dos fármacos
20.
J Ethnopharmacol ; 144(3): 555-61, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23058991

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ligustrazine, the biologically active ingredient isolated from a popular Chinese medicinal plant, Ligusticum chuanxiong Hort. (Umbelliferae), has been used effectively to treat ischemic heart diseases, cerebrovascular and thrombotic vascular diseases since the 1970s. MATERIALS AND METHODS: At present, the effect of ligustrazine on L-type calcium current (I(Ca-L)) of ventricular myocytes remains controversial. In this study, we use the whole-cell patch-clamp techniques and video-based edge detection and dual excitation fluorescence photomultiplier systems to study the effects of ligustrazine on I(Ca-L), and calcium transient and contractility in rabbit ventricular myocytes in the absence and presence of isoprenaline (ISO). RESULTS: Ligustrazine (5 µM) in low concentration did not affect I(Ca-L) (P>0.05), higher concentrations of this drug (10, 20, 40, 80 µM) inhibited I(Ca-L) in a concentration-dependent manner and reduced I(Ca-L) by 9.6 ± 2.9%, 21.0 ± 4.3%, 33.9 ± 4.3%, and 51.6 ± 7.3%, respectively. Under normal conditions, ligustrazine (40 µΜ) reduced baseline of fura-2 fluorescence intensities (FFI, 340/380 ratio), namely diastolic calcium concentration, changes in FFI (ΔFFI, 340/380 ratio) and maximal velocity of Ca(2+) rise and decay (340/380 ratio/ms) by 6.3%, 26.1%, 25.2%, and 26.5%, and decreased sarcomere peak shorting (PS) and maximal velocity of shorting and relengthening by 36.4%, 31.9%, and 25.0%, respectively. Similarly, ligustrazine (40 µM) reduced baseline FFI, ΔFFI, and maximal velocity of Ca(2+) rise and decay by 14.1%, 51.1%, 35.2%, and 41.1%, and reduced sarcomere PS and maximal velocity of shorting and relengthening by 38.6%, 50.0% and 39.1%, respectively, in the presence of ISO. CONCLUSIONS: Ligustrazine not only significantly inhibits I(Ca-L) in a concentration-dependent manner but also suppressed calcium transient and contraction in the absence and presence of ISO.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Pirazinas/farmacologia , Animais , Cálcio/fisiologia , Canais de Cálcio Tipo L/fisiologia , Feminino , Ventrículos do Coração/citologia , Isoproterenol/farmacologia , Masculino , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Coelhos , Simpatomiméticos/farmacologia , Função Ventricular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA