Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Commun ; 12(1): 5308, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489463

RESUMO

Climate change is altering the frequency and severity of drought events. Recent evidence indicates that drought may produce legacy effects on soil microbial communities. However, it is unclear whether precedent drought events lead to ecological memory formation, i.e., the capacity of past events to influence current ecosystem response trajectories. Here, we utilize a long-term field experiment in a mountain grassland in central Austria with an experimental layout comparing 10 years of recurrent drought events to a single drought event and ambient conditions. We show that recurrent droughts increase the dissimilarity of microbial communities compared to control and single drought events, and enhance soil multifunctionality during drought (calculated via measurements of potential enzymatic activities, soil nutrients, microbial biomass stoichiometry and belowground net primary productivity). Our results indicate that soil microbial community composition changes in concert with its functioning, with consequences for soil processes. The formation of ecological memory in soil under recurrent drought may enhance the resilience of ecosystem functioning against future drought events.


Assuntos
Secas/estatística & dados numéricos , Microbiota/fisiologia , Microbiologia do Solo , Solo/química , Água/análise , Acidobacteria/classificação , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Altitude , Áustria , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Biomassa , Carbono/análise , Chloroflexi/classificação , Chloroflexi/genética , Chloroflexi/isolamento & purificação , Pradaria , Humanos , Nitrogênio/análise , Fósforo/análise , Planctomycetales/classificação , Planctomycetales/genética , Planctomycetales/isolamento & purificação , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Enxofre/análise , Verrucomicrobia/classificação , Verrucomicrobia/genética , Verrucomicrobia/isolamento & purificação
2.
Cell Rep Med ; 2(3): 100206, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33763652

RESUMO

Extremely low birth weight (ELBW) infants often develop an altered gut microbiota composition, which is related to clinical complications, such as necrotizing enterocolitis and sepsis. Probiotic supplementation may reduce these complications, and modulation of the gut microbiome is a potential mechanism underlying the probiotic effectiveness. In a randomized, double-blind, placebo-controlled trial, we assessed the effect of Lactobacillus reuteri supplementation, from birth to post-menstrual week (PMW)36, on infant gut microbiota. We performed 16S amplicon sequencing in 558 stool samples from 132 ELBW preterm infants at 1 week, 2 weeks, 3 weeks, 4 weeks, PMW36, and 2 years. Probiotic supplementation results in increased bacterial diversity and increased L. reuteri abundance during the 1st month. At 1 week, probiotic supplementation also results in a lower abundance of Enterobacteriaceae and Staphylococcaceae. No effects were found at 2 years. In conclusion, probiotics may exert benefits by modulating the gut microbiota composition during the 1st month in ELBW infants.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal/genética , Recém-Nascido de Peso Extremamente Baixo ao Nascer/crescimento & desenvolvimento , Lactente Extremamente Prematuro/crescimento & desenvolvimento , Limosilactobacillus reuteri/fisiologia , Probióticos/administração & dosagem , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Biodiversidade , Fezes/microbiologia , Feminino , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Fusobactérias/classificação , Fusobactérias/genética , Fusobactérias/isolamento & purificação , Humanos , Lactente , Masculino , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Verrucomicrobia/classificação , Verrucomicrobia/genética , Verrucomicrobia/isolamento & purificação
3.
Molecules ; 25(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033507

RESUMO

The allicin diallyldisulfid-S-oxide, a major garlic organosulfur compound (OSC) in crushed garlic (Allium sativum L.), possesses antibacterial effects, and influences gut bacteria. In this study, we made allicin-free garlic (AFG) extract and investigated its effects on gut microbiome. C57BL/6N male mice were randomly divided into 6 groups and fed normal diet (ND) and high-fat diet (HFD) supplemented with or without AFG in concentrations of 1% and 5% for 11 weeks. The genomic DNAs of feces were used to identify the gut microbiome by sequencing 16S rRNA genes. The results revealed that the ratio of p-Firmicutes to p-Bacteroidetes increased by aging and HFD was reduced by AFG. In particular, the f-Lachnospiraceae, g-Akkermansia, and g-Lactobacillus decreased by aging and HFD was enhanced by AFG. The g-Dorea increased by aging and HFD decreased by AFG. In addition, the ratio of glutamic-pyruvic transaminase to glutamic-oxaloacetic transaminase (GPT/GOT) in serum was significantly increased in the HFD group and decreased by AFG. In summary, our data demonstrated that dietary intervention with AFG is a potential way to balance the gut microbiome disturbed by a high-fat diet.


Assuntos
Antibacterianos/farmacologia , Suplementos Nutricionais , Alho/química , Microbioma Gastrointestinal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/isolamento & purificação , Dieta Hiperlipídica , Dissulfetos , Firmicutes/efeitos dos fármacos , Firmicutes/isolamento & purificação , Alho/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Sulfínicos/análise , Verrucomicrobia/efeitos dos fármacos , Verrucomicrobia/isolamento & purificação
4.
J Ethnopharmacol ; 247: 112299, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31606537

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hua-Feng-Dan (HFD) is a traditional Chinese medicine used for neurological disorders. HFD contains cinnabar (HgS) and realgar (As4S4). The ethnopharmacological basis of cinnabar and realgar in HFD is not known. AIM OF THE STUDY: To address the role of cinnabar and realgar in HFD-produced neuroprotection against neurodegenerative diseases and disturbance of gut microbiota. MATERIALS AND METHODS: Lipopolysaccharide (LPS) plus rotenone (ROT)-elicited rat dopaminergic (DA) neuronal damage loss was performed as a Parkinson's disease animal model. Rats were given a single injection of LPS. Four months later, rats were challenged with the threshold dose of ROT. The clinical dose of HFD was administered via feed, starting from ROT administration for 46 days. Behavioral dysfunction was detected by rotarod and Y-maze tests. DA neuron loss and microglial activation were assessed via immunohistochemical staining and western bolt analysis. The colon content was collected to extract bacterial DNA followed by real-time PCR analysis with 16S rRNA primers. RESULTS: LPS plus ROT induced neurotoxicity, as evidenced by DA neuron loss in substantia nigra, impaired behavioral functions and increased microglial activation. HFD-original (containing 10% cinnabar and 10% realgar) rescued loss of DA neurons, improved behavioral dysfunction and attenuated microglial activation. Compared with HFD-original, HFD-reduced (3% cinnabar and 3% realgar) was also effective, but to be a less extent, while HFD-removed (without cinnabar and realgar) was ineffective. In analysis of gut microbiome, the increased Verrucomicrobiaceae and Lactobacteriaceae, and the decreased Enterobacteeriaceae by LPS plus ROT were ameliorated by HFD-original, and to be the less extent by HFD-reduced. CONCLUSION: Cinnabar and realgar are active ingredients in HFD to exert beneficial effects in a neurodegenerative model and gut microbiota.


Assuntos
Arsenicais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Compostos de Mercúrio/farmacologia , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Sulfetos/farmacologia , Animais , Arsenicais/química , Arsenicais/uso terapêutico , DNA Bacteriano/isolamento & purificação , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Etnofarmacologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Humanos , Mediadores da Inflamação/metabolismo , Lactobacillaceae/efeitos dos fármacos , Lactobacillaceae/genética , Lactobacillaceae/isolamento & purificação , Lipopolissacarídeos/toxicidade , Masculino , Compostos de Mercúrio/química , Compostos de Mercúrio/uso terapêutico , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/patologia , Degeneração Neural , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/imunologia , Síndromes Neurotóxicas/patologia , RNA Ribossômico 16S/genética , Ratos , Rotenona/toxicidade , Sulfetos/química , Sulfetos/uso terapêutico , Verrucomicrobia/efeitos dos fármacos , Verrucomicrobia/genética , Verrucomicrobia/isolamento & purificação
5.
Appetite ; 141: 104301, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31132422

RESUMO

Akkermansia muciniphila bacterium is one of the inhabitant gut microbiota involving in the energy homeostasis and inhibition of the inflammations. The present study was designed to evaluate the effects of Oleoylethanolamide (OEA) supplementation on the abundance of A. muciniphila and the dietary intakes in obese people. In this randomized, double-blind, controlled clinical trial, 60 eligible obese people were selected and divided randomly into two groups including OEA group (received two capsules containing 125 mg of OEA daily) and placebo group (received two capsules containing 125 mg of starch daily). The treatment lasted for 8 weeks. Dietary intakes were evaluated according to the three -day food record and, were analyzed by the Nutritionist 4 software. In order to evaluate the changes in the abundance of A. muciniphila bacterium, faeces samples were collected at baseline and at the end of study. The targeting of the 16S rRNA gene in A. muciniphila was measured by the quantitative real-time PCR analysis. For OEA group, the energy and carbohydrate intakes decreased significantly after adjusting for baseline values and confounder factors; (p = 0.035), the amount of carbohydrate was reported as 422.25 (SD = 103.11) gr and 368.44 (SD = 99.08) gr; (p = 0.042)), before and after the treatment, respectively. The abundance of A. muciniphila bacterium increased significantly in OEA group compared to placebo group (p < 0.001). Considering the accumulating evidence identified OEA as a novel, safe, and efficacious pharmaceutical agent increasing the abundance of A. muciniphila bacterium and modifying the energy balance, therefore it is suggested to use its supplement for treatment of the obese people. However, future studies are needed to confirm the positive results obtained in this study.


Assuntos
Suplementos Nutricionais , Endocanabinoides/administração & dosagem , Microbioma Gastrointestinal , Obesidade/terapia , Ácidos Oleicos/administração & dosagem , Verrucomicrobia/isolamento & purificação , Adulto , Akkermansia , Carboidratos da Dieta , Método Duplo-Cego , Ingestão de Energia , Metabolismo Energético , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/microbiologia , RNA Ribossômico 16S
6.
Appl Microbiol Biotechnol ; 103(13): 5311-5321, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30993386

RESUMO

Coix seed (CS) is widely used as food material and herbal medicine in Asian countries with hypolipidemic and anti-inflammatory properties. But whether CS takes effect by modulating the composition of the gut microbiota remains unknown. Here, three groups of mice were fed different diets for 5 weeks: standard chow, high fat (HF), and CS added to HF. As compared to chow, mice in HF group demonstrated a significant increase in body weight (BW), fat mass (FM), together with total cholesterol (TC), and they even developed impaired glucose tolerance. These HF-mediated deleterious metabolic effects were counteracted partly by complementing CS. 16S rRNA gene sequencing analysis revealed CS increased the abundance of genera Lactobacillus, Coprococcus, and Akkermansia in the gut microbita, and it also enriched species Akkermansia muciniphila and Lactobacillus agilis. A. muciniphila was reported to be inversely associated with obesity, diabetes and cardiometabolic diseases, while L. agilis was negatively associated with TC, BW, FM and blood glucose in our data. We identified CS-altered microbial metabolic pathways that were linked to Glycerolipid metabolism, Biosynthesis of unsaturated fatty acids, sulfur reduction, and glutathione transport system. Our results indicate CS may be used as prebiotic agents to lose weight and prevent obesity-related metabolic disorders.


Assuntos
Coix/química , Microbioma Gastrointestinal , Prebióticos/administração & dosagem , Sementes/química , Redução de Peso , Animais , Peso Corporal , Dieta Hiperlipídica , Lactobacillus/isolamento & purificação , Metabolismo dos Lipídeos , Doenças Metabólicas , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/prevenção & controle , RNA Ribossômico 16S , Organismos Livres de Patógenos Específicos , Verrucomicrobia/isolamento & purificação
7.
Ecotoxicol Environ Saf ; 170: 446-452, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30553922

RESUMO

Vertical up-flow constructed wetlands (CWs) with manganese ore (Mn ore) as media (M-CWs) were developed to treat simulated polluted river water. The results showed that the average removal efficiencies for NH4-N, NO3-N, TN and TP were 91.74%, 83.29%, 87.47% and 65.12% in M-CWs, respectively, which were only 79.12%, 72.90%, 75.85% and 43.23% in the CWs without Mn ore (C-CWs). Nutrient mass balance showed that nitrogen (N) removal was improved by enhanced microbial processes, media storage and plant uptake in M-CWs. Moreover, almost 50% of phosphorus (P) was retained by media storage because of the adsorption processes on Mn ore. It was found that addition of Mn ore enhanced denitrification as the relative abundance of denitrifying bacteria increased. The produced Mn(II) and more abundant Gammaproteobacteria confirmed alternative N removal pathways including anoxic nitrification coupled to Mn ore reduction and denitrification using Mn(II) as electron donor. Mn(II) concentration in the effluent of M-CWs was below the drinking water limit of 0.1 mg/L, which makes them environmentally-friendly.


Assuntos
Manganês/química , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise , Áreas Alagadas , Acidobacteria/isolamento & purificação , Acidobacteria/metabolismo , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , Chloroflexi/isolamento & purificação , Chloroflexi/metabolismo , Desnitrificação , Gammaproteobacteria/isolamento & purificação , Gammaproteobacteria/metabolismo , Microbiota , Modelos Teóricos , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , Rios/química , Verrucomicrobia/isolamento & purificação , Verrucomicrobia/metabolismo
8.
Genes Immun ; 20(2): 158-166, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29599513

RESUMO

Studies have identified abnormalities in the microbiota of patients with arthritis. To evaluate the pathogenicity of human microbiota, we performed fecal microbial transplantation from children with spondyloarthritis and controls to germ-free KRN/B6xNOD mice. Ankle swelling was equivalent in those that received patient vs. control microbiota. Principal coordinates analysis revealed incomplete uptake of the human microbiota with over-representation of two genera (Bacteroides and Akkermansia) among the transplanted mice. The microbiota predicted the extent of ankle swelling (R2 = 0.185, p = 0.018). The abundances of Bacteroides (r = -0.510, p = 0.010) inversely and Akkermansia (r = 0.367, p = 0.078) directly correlated with ankle swelling. Addition of Akkermansia muciniphila to Altered Schaedler's Flora (ASF) resulted in small but statistically significant increased ankle swelling as compared to mice that received ASF alone (4.0 mm, 3.9-4.1 vs. 3.9 mm, IQR 3.6-4.0, p = 0.041), as did addition of A. muciniphila cultures to transplanted human microbiota as compared to mice that received transplanted human microbiota alone (4.5 mm, IQR 4.3-5.5 vs. 4.1 mm, IQR 3.9-4.3, p = 0.019). This study supports previous findings of an association between A. muciniphila and arthritis.


Assuntos
Artrite/microbiologia , Microbioma Gastrointestinal , Adolescente , Animais , Tornozelo/patologia , Bacteroides/isolamento & purificação , Bacteroides/patogenicidade , Criança , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Verrucomicrobia/isolamento & purificação , Verrucomicrobia/patogenicidade
9.
Microbiome ; 6(1): 95, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29793531

RESUMO

BACKGROUND: The early-life gut microbiota plays a critical role in host metabolism in later life. However, little is known about how the fatty acid profile of the maternal diet during gestation and lactation influences the development of the offspring gut microbiota and subsequent metabolic health outcomes. RESULTS: Here, using a unique transgenic model, we report that maternal endogenous n-3 polyunsaturated fatty acid (PUFA) production during gestation or lactation significantly reduces weight gain and markers of metabolic disruption in male murine offspring fed a high-fat diet. However, maternal fatty acid status appeared to have no significant effect on weight gain in female offspring. The metabolic phenotypes in male offspring appeared to be mediated by comprehensive restructuring of gut microbiota composition. Reduced maternal n-3 PUFA exposure led to significantly depleted Epsilonproteobacteria, Bacteroides, and Akkermansia and higher relative abundance of Clostridia. Interestingly, offspring metabolism and microbiota composition were more profoundly influenced by the maternal fatty acid profile during lactation than in utero. Furthermore, the maternal fatty acid profile appeared to have a long-lasting effect on offspring microbiota composition and function that persisted into adulthood after life-long high-fat diet feeding. CONCLUSIONS: Our data provide novel evidence that weight gain and metabolic dysfunction in adulthood is mediated by maternal fatty acid status through long-lasting restructuring of the gut microbiota. These results have important implications for understanding the interaction between modern Western diets, metabolic health, and the intestinal microbiome.


Assuntos
Dieta Hiperlipídica , Ácidos Graxos Ômega-3/metabolismo , Microbioma Gastrointestinal/fisiologia , Intestinos/microbiologia , Obesidade/patologia , Animais , Animais Recém-Nascidos/metabolismo , Animais Recém-Nascidos/microbiologia , Bacteroides/isolamento & purificação , Clostridiaceae/isolamento & purificação , Epsilonproteobacteria/isolamento & purificação , Ácidos Graxos Dessaturases/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Verrucomicrobia/isolamento & purificação , Aumento de Peso
10.
Mar Drugs ; 16(5)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29772753

RESUMO

Recently, accumulating evidence has suggested that Enteromorpha clathrata polysaccharide (ECP) could contribute to the treatment of diseases. However, as a promising candidate for marine drug development, although ECP has been extensively studied, less consideration has been given to exploring its effect on gut microbiota. In this light, given the critical role of gut microbiota in health and disease, we investigated here the effect of ECP on gut microbiota using 16S rRNA high-throughput sequencing. As revealed by bioinformatic analyses, ECP considerably changed the structure of the gut microbiota and significantly promoted the growth of probiotic bacteria in C57BL/6J mice. However, interestingly, ECP exerted different effects on male and female microbiota. In females, ECP increased the abundances of Bifidobacterium spp. and Akkermansia muciniphila, a next-generation probiotic bacterium, whereas in males, ECP increased the population of Lactobacillus spp. Moreover, by shaping a more balanced structure of the microbiota, ECP remarkably reduced the antigen load from the gut in females. Altogether, our study demonstrates for the first time a prebiotic effect of ECP on gut microbiota and forms the basis for the development of ECP as a novel gut microbiota modulator for health promotion and disease management.


Assuntos
Organismos Aquáticos/metabolismo , Disbiose/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Polissacarídeos/farmacologia , Ulva/metabolismo , Proteínas de Fase Aguda/imunologia , Administração Oral , Animais , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/isolamento & purificação , Proteínas de Transporte/sangue , Proteínas de Transporte/imunologia , Biologia Computacional , Suplementos Nutricionais , Modelos Animais de Doenças , Disbiose/sangue , Disbiose/imunologia , Feminino , Humanos , Lactobacillus/efeitos dos fármacos , Lactobacillus/isolamento & purificação , Masculino , Glicoproteínas de Membrana/sangue , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/isolamento & purificação , Polissacarídeos/uso terapêutico , Organismos Livres de Patógenos Específicos , Verrucomicrobia/efeitos dos fármacos , Verrucomicrobia/isolamento & purificação
11.
Nutrients ; 9(12)2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29244718

RESUMO

Prebiotic dietary fiber supplements are commonly consumed to help meet fiber recommendations and improve gastrointestinal health by stimulating beneficial bacteria and the production of short-chain fatty acids (SCFAs), molecules beneficial to host health. The objective of this research project was to compare potential prebiotic effects and fermentability of five commonly consumed fibers using an in vitro fermentation system measuring changes in fecal microbiota, total gas production and formation of common SCFAs. Fecal donations were collected from three healthy volunteers. Materials analyzed included: pure beta-glucan, Oatwell (commercially available oat-bran containing 22% oat ß-glucan), xylooligosaccharides (XOS), WholeFiber (dried chicory root containing inulin, pectin, and hemi/celluloses), and pure inulin. Oatwell had the highest production of propionate at 12 h (4.76 µmol/mL) compared to inulin, WholeFiber and XOS samples (p < 0.03). Oatwell's effect was similar to those of the pure beta-glucan samples, both samples promoted the highest mean propionate production at 24 h. XOS resulted in a significant increase in the genus Bifidobacterium after 24 h of fermentation (0 h:0.67 OTUs (operational taxonomic unit); 24 h:5.22 OTUs; p = 0.038). Inulin and WholeFiber increased the beneficial genus Collinsella, consistent with findings in clinical studies. All analyzed compounds were fermentable and promoted the formation of beneficial SCFAs.


Assuntos
Fibras na Dieta/administração & dosagem , Trato Gastrointestinal/metabolismo , Glucuronatos/metabolismo , Inulina/metabolismo , Oligossacarídeos/metabolismo , Prebióticos/administração & dosagem , beta-Glucanas/metabolismo , Actinobacteria/isolamento & purificação , Adulto , Bacteroidetes/isolamento & purificação , Bifidobacterium/metabolismo , Índice de Massa Corporal , Celulose , Cichorium intybus/química , DNA Bacteriano/isolamento & purificação , Ácidos Graxos Voláteis/biossíntese , Fezes/microbiologia , Feminino , Fermentação , Firmicutes/isolamento & purificação , Microbioma Gastrointestinal , Humanos , Masculino , Pectinas , Propionatos/metabolismo , Proteobactérias/isolamento & purificação , Verrucomicrobia/isolamento & purificação , Adulto Jovem
12.
ISME J ; 11(11): 2599-2610, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28777381

RESUMO

Aerobic methanotrophic bacteria have evolved a specialist lifestyle dependent on consumption of methane and other short-chain carbon compounds. However, their apparent substrate specialism runs contrary to the high relative abundance of these microorganisms in dynamic environments, where the availability of methane and oxygen fluctuates. In this work, we provide in situ and ex situ evidence that verrucomicrobial methanotrophs are mixotrophs. Verrucomicrobia-dominated soil communities from an acidic geothermal field in Rotokawa, New Zealand rapidly oxidised methane and hydrogen simultaneously. We isolated and characterised a verrucomicrobial strain from these soils, Methylacidiphilum sp. RTK17.1, and showed that it constitutively oxidises molecular hydrogen. Genomic analysis confirmed that this strain encoded two [NiFe]-hydrogenases (group 1d and 3b), and biochemical assays revealed that it used hydrogen as an electron donor for aerobic respiration and carbon fixation. While the strain could grow heterotrophically on methane or autotrophically on hydrogen, it grew optimally by combining these metabolic strategies. Hydrogen oxidation was particularly important for adaptation to methane and oxygen limitation. Complementary to recent findings of hydrogenotrophic growth by Methylacidiphilum fumariolicum SolV, our findings illustrate that verrucomicrobial methanotrophs have evolved to simultaneously utilise hydrogen and methane from geothermal sources to meet energy and carbon demands where nutrient flux is dynamic. This mixotrophic lifestyle is likely to have facilitated expansion of the niche space occupied by these microorganisms, allowing them to become dominant in geothermally influenced surface soils. Genes encoding putative oxygen-tolerant uptake [NiFe]-hydrogenases were identified in all publicly available methanotroph genomes, suggesting hydrogen oxidation is a general metabolic strategy in this guild.


Assuntos
Metano/metabolismo , Microbiologia do Solo , Verrucomicrobia/metabolismo , Processos Autotróficos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genômica , Hidrogenase/genética , Hidrogenase/metabolismo , Nova Zelândia , Oxirredução , Oxigênio/metabolismo , Filogenia , Solo/química , Verrucomicrobia/classificação , Verrucomicrobia/genética , Verrucomicrobia/isolamento & purificação
13.
Microb Ecol ; 73(1): 91-100, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815589

RESUMO

The environmental impact of major oil spills on marine microorganisms has yet to be thoroughly investigated using molecular biology techniques. The Deepwater Horizon (DWH) drilling rig explosion of 2010 affected an approximately 176,000 km2 surface area of the Gulf of Mexico (GOM) when an estimated 210 million gallons of oil from the Macondo Prospect spilled into the environment. Pelagic Sargassum, a complex of two surface drifting species (Sargassum natans and Sargassum fluitans) of marine brown macroalgae and a critically important habitat in the GOM ecosystem, was suffused by Macondo Prospect 252 oil released during the DWH event. Using 16S rRNA PCR and Roche 454 pyrosequencing, the effect of the oil on the bacterial population associated with pelagic Sargassum and contiguous waters was examined by comparing sequence data generated from samples collected from oiled and non-oiled locations in the northern GOM. Sequence data showed similar microbial composition in Sargassum regardless of exposure to oil primarily dominated by five phyla; Proteobacteria, Bacteroidetes, Actinobacteria, Verrucomicrobia, and unclassified bacteria. The microbial composition in water samples was significantly less diverse than for Sargassum and consisted primarily of Proteobacteria, Firmicutes, and Bacteroidetes. Due to the evenly distributed abundance of microbial species on oiled and non-oiled pelagic Sargassum, study findings indicate that DWH spilled oil had minimal effect on the composition and diversity of the microbial community associated with Sargassum and contiguous waters. However, higher abundances of Sulfitobacter and one species of Psychrobacter were found in oiled water samples when compared to non-oiled water samples indicating some effect of DHW oil in the microbial composition of seawater. Though there are a number of marine studies using molecular biology approaches, this is the first molecular examination of the impact of the DWH oil spill on bacterial communities associated with pelagic Sargassum and contiguous waters from the GOM.


Assuntos
Actinobacteria/classificação , Bacteroidetes/classificação , Monitoramento Ambiental/métodos , Firmicutes/classificação , Poluição por Petróleo , Proteobactérias/classificação , Sargassum/microbiologia , Verrucomicrobia/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , DNA Bacteriano/genética , Meio Ambiente , Firmicutes/genética , Firmicutes/isolamento & purificação , Golfo do México , Microbiota/genética , Indústria de Petróleo e Gás , Petróleo/toxicidade , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Sargassum/crescimento & desenvolvimento , Água do Mar/química , Água do Mar/microbiologia , Verrucomicrobia/genética , Verrucomicrobia/isolamento & purificação
14.
Microbiome ; 4(1): 50, 2016 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-27640125

RESUMO

BACKGROUND: End-stage renal disease (ESRD) is associated with uremia and increased systemic inflammation. Alteration of the intestinal microbiota may facilitate translocation of endotoxins into the systemic circulation leading to inflammation. We hypothesized that children with ESRD have an altered intestinal microbiota and increased serum levels of bacterially derived uremic toxins. METHODS: Four groups of subjects were recruited: peritoneal dialysis (PD), hemodialysis (HD), post-kidney transplant and healthy controls. Stool bacterial composition was assessed by pyrosequencing analysis of 16S rRNA genes. Serum levels of C-reactive protein (CRP), D-lactate, p-cresyl sulfate and indoxyl sulfate were measured. RESULTS: Compared to controls, the relative abundance of Firmicutes (P = 0.0228) and Actinobacteria (P = 0.0040) was decreased in PD patients. The relative abundance of Bacteroidetes was increased in HD patients (P = 0.0462). Compared to HD patients the relative abundance of Proteobacteria (P = 0.0233) was increased in PD patients. At the family level, Enterobacteriaceae was significantly increased in PD patients (P = 0.0020) compared to controls; whereas, Bifidobacteria showed a significant decrease in PD and transplant patients (P = 0.0020) compared to control. Alpha diversity was decreased in PD patients and kidney transplant using both phylogenetic and non-phylogenetic diversity measures (P = 0.0031 and 0.0003, respectively), while beta diversity showed significant separation (R statistic = 0.2656, P = 0.010) between PD patients and controls. ESRD patients had increased serum levels of p-cresyl sulfate and indoxyl sulfate (P < 0.0001 and P < 0.0001, respectively). The data suggests that no significant correlation exists between the alpha diversity of the intestinal microbiota and CRP, D-lactate, or uremic toxins. Oral iron supplementation results in expansion of the phylum Proteobacteria. CONCLUSIONS: Children with ESRD have altered intestinal microbiota and increased bacterially derived serum uremic toxins.


Assuntos
Cresóis/sangue , Microbioma Gastrointestinal/genética , Indicã/sangue , Falência Renal Crônica/microbiologia , Ésteres do Ácido Sulfúrico/sangue , Uremia/sangue , Actinobacteria/isolamento & purificação , Adolescente , Carga Bacteriana , Bacteroidetes/isolamento & purificação , Proteína C-Reativa/metabolismo , Criança , Pré-Escolar , Fezes/microbiologia , Feminino , Firmicutes/isolamento & purificação , Humanos , Intestinos/microbiologia , Transplante de Rim , Ácido Láctico/sangue , Masculino , Diálise Peritoneal , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Verrucomicrobia/isolamento & purificação
15.
Int J Syst Evol Microbiol ; 66(8): 3034-3040, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27154284

RESUMO

Two novel members of the bacterial phylum 'Verrucomicrobia', strains CAG34T and CV41T, were isolated from the guts of Cephalotes rohweri and Cephalotes varians ants, respectively. Strains CAG34T and CV41T were coccoid, Gram-stain-negative, non-motile, and formed cream-coloured colonies on trypticase soy agar. Optimum growth occurred under an atmosphere of 12-20 % O2 and 1 % CO2 for both strains, although strain CV41T could not grow without supplemental CO2. Growth was possible under NaCl concentrations of 0.5-1.5 % (w/v) and temperatures of 23-37 °C for both strains, and pH values of 6.9-7.7 for strain CAG34T and 6.9-7.3 for strain CV41T. The G+C content of the genomic DNA was 60.7 mol% for strain CAG34T and 60.5 mol% for strain CV41T. The major fatty acids for both strains were anteiso-C15 : 0, iso-C14 : 0, C16 : 0, and C16 : 1ω5c. Based on the phylogenetic analysis of 16S rRNA gene sequences, the closest cultivated relative for both strains was the type strain of Opitutus terrae (91.8 % similarity). Hence, strains CAG34T and CV41T are considered to represent a new genus within the 'Verrucomicrobia' family Opitutaceae, for which we propose the name Cephaloticoccus gen. nov. Given that strains CAG34T and CV41T share 97.7 % 16S rRNA gene sequence similarity with each other and are physiologically distinct, we propose to classify the isolates as representing two novel species, Cephaloticoccus primus sp. nov. for strain CAG34T (=NCIMB 15004T =ATCC TSD-38T) and Cephaloticoccus capnophilus sp. nov. for strain CV41T (=NCIMB 15005T =ATCC TSD-39T =DSM 100879T).


Assuntos
Formigas/microbiologia , Filogenia , Verrucomicrobia/classificação , Animais , Arizona , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Florida , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Verrucomicrobia/genética , Verrucomicrobia/isolamento & purificação
16.
Gut ; 64(6): 872-83, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25080446

RESUMO

OBJECTIVE: The increasing prevalence of obesity and type 2 diabetes (T2D) demonstrates the failure of conventional treatments to curb these diseases. The gut microbiota has been put forward as a key player in the pathophysiology of diet-induced T2D. Importantly, cranberry (Vaccinium macrocarpon Aiton) is associated with a number of beneficial health effects. We aimed to investigate the metabolic impact of a cranberry extract (CE) on high fat/high sucrose (HFHS)-fed mice and to determine whether its consequent antidiabetic effects are related to modulations in the gut microbiota. DESIGN: C57BL/6J mice were fed either a chow or a HFHS diet. HFHS-fed mice were gavaged daily either with vehicle (water) or CE (200 mg/kg) for 8 weeks. The composition of the gut microbiota was assessed by analysing 16S rRNA gene sequences with 454 pyrosequencing. RESULTS: CE treatment was found to reduce HFHS-induced weight gain and visceral obesity. CE treatment also decreased liver weight and triglyceride accumulation in association with blunted hepatic oxidative stress and inflammation. CE administration improved insulin sensitivity, as revealed by improved insulin tolerance, lower homeostasis model assessment of insulin resistance and decreased glucose-induced hyperinsulinaemia during an oral glucose tolerance test. CE treatment was found to lower intestinal triglyceride content and to alleviate intestinal inflammation and oxidative stress. Interestingly, CE treatment markedly increased the proportion of the mucin-degrading bacterium Akkermansia in our metagenomic samples. CONCLUSIONS: CE exerts beneficial metabolic effects through improving HFHS diet-induced features of the metabolic syndrome, which is associated with a proportional increase in Akkermansia spp.


Assuntos
Enterite/tratamento farmacológico , Enterite/microbiologia , Resistência à Insulina , Obesidade Abdominal/prevenção & controle , Extratos Vegetais/farmacologia , Vaccinium macrocarpon/química , Verrucomicrobia/efeitos dos fármacos , Animais , Dieta Hiperlipídica/efeitos adversos , Endotoxemia/etiologia , Endotoxemia/prevenção & controle , Hepatite/prevenção & controle , Homeostase/efeitos dos fármacos , Intestinos/microbiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Lipopolissacarídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Obesidade Abdominal/etiologia , Tamanho do Órgão/efeitos dos fármacos , Polifenóis/análise , Polifenóis/farmacologia , Triglicerídeos/metabolismo , Verrucomicrobia/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA