Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Food Prot ; 86(3): 100056, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36916561

RESUMO

Ultraviolet-C (UV-C) irradiation is a well-recognized technology for improving blueberry postharvest quality, and previous literature indicates that it has the potential for dual-use as an antimicrobial intervention for this industry. However, the practicality and feasibility of deploying this technology in fresh blueberry fruit are significantly hindered by the shadowing effect occurring at the blossom-end scar of the fruit. The purpose of this study was to determine if treating the blueberry fruit within a chamber fitted with UV-Light Emitting Diodes (LEDs) emitting a peak UV-C at 275 nm could minimize this shadowing and result in improved treatment efficacy. Ten blueberry fruits were dip-inoculated with E. coli at a concentration of 105 CFU/mL and irradiated within the system at doses of 0, 1.617, 3.234, 9.702, and 16.17 mJ/cm2 (0, 30, 60, 180, and 300 s). Statistical analysis was performed to characterize the extent of microbial survival as well as the UV-C inactivation kinetics. A maximum of 0.91-0.95 log reduction was observed, which attenuated after 60 s of treatment. The microbial inactivation and survival were thus modeled using the Geeraerd-tail model in Microsoft Excel with the GInaFIt add-in (RMSE = 0.2862). Temperatures fluctuated between 23 ± 0.5°C and 39.5°C ± 0.5°C during treatment but did not statistically impact the treatment efficacy (P = 0.0823). The data indicate that the design of a UV-LED system may improve the antimicrobial efficacy of UV-C technology for the surface decontamination of irregularly shaped fruits, and that further optimization could facilitate its use in the industry.


Assuntos
Mirtilos Azuis (Planta) , Escherichia coli O157 , Frutas , Contagem de Colônia Microbiana , Viabilidade Microbiana/efeitos da radiação , Raios Ultravioleta
2.
Ultrason Sonochem ; 90: 106166, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36215891

RESUMO

Although both ultraviolet (UV) radiation and ultrasound (US) treatment have their capabilities in microbial inactivation, applying any one method alone may require a high dose for complete inactivation, which may affect the sensory and nutritional properties of pineapple juice. Hence, this study was intended to analyse and optimise the effect of combined US and UV treatments on microbial inactivation without affecting the selected quality parameters of pineapple juice. US treatment (33 kHz) was done at three different time intervals, viz. 10 min, 20 min and 30 min., after which, juice samples were subjected to UV treatment for 10 min at three UV dosage levels, viz. 1 J/cm2, 1.3 J/cm2, and 1.6 J/cm2. The samples were evaluated for total colour difference, pH, total soluble solids (TSS), titrable acidity (TA), and ascorbic acid content; total bacterial count and total yeast count; and the standardization of process parameters was done using Response Surface Methodology and Artificial Neural Network. The results showed that the individual, as well as combined treatments, did not significantly impact the physicochemical properties while retaining the quality characteristics. It was observed that combined treatment resulted in 5 log cycle reduction in bacterial and yeast populations while the individual treatment failed. From the optimization studies, it was found that combined US and UV treatments with 22.95 min and1.577 J/cm2 ensured a microbiologically safe product while retaining organoleptic quality close to that of fresh juice.


Assuntos
Ananas , Malus , Malus/química , Manipulação de Alimentos/métodos , Saccharomyces cerevisiae , Sucos de Frutas e Vegetais , Viabilidade Microbiana/efeitos da radiação , Ananas/química
3.
J Photochem Photobiol B ; 215: 112123, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33454542

RESUMO

The direct application of light for photo-disinfection potentially provides a safe and novel modality to inhibit or eliminate cariogenic bacteria residing upon and within dentine. This study aimed to both; characterize the pattern of transmission of 405 nm light through molar dentine at different tooth locations, as well as, determine the irradiation parameters that are antibacterial for Streptococcus mutans under various growth conditions, including lawns, planktonic cultures, and biofilms. To determine the amount of light (405 nm) transmitted at different anatomical tooth locations; irradiance values were recorded after blue light (470-4054 mW/cm2) had traversed through occlusal, oblique, and buccal dentine sections; and three thicknesses - 1, 2 and 3 mm were investigated. To determine tubular density; scanning electron micrographs from 2 mm outer (dentine-enamel junction) and inner (pulp) dentine sections were analysed. For photo-disinfection studies; S. mutans was irradiated using the same 405 nm wavelength light at a range of doses (110-1254 J/cm2) in both biofilm and planktonic cultures. The inhibitory effect of the irradiation on bacterial lawns was compared by measuring zones of inhibition; and for planktonic cultures both spectrophotometric and colony forming unit (CFU) assays were performed. A live/dead staining assay was utilised to determine the effect of irradiation on bacterial viability in mature biofilms. Data indicated that increasing dentine thickness decreased light transmission significantly irrespective of its orientation. Occlusal and oblique samples exhibited higher transmission compared with buccal dentine. Oblique dentine 405 nm light transmission was comparable with that of occlusal dentine independent of section thickness. An increased tubule density directly positively correlated with light transmission. Irradiation at 405 nm inhibited S. mutans growth in both biofilm and planktonic cultures and a dose response relationship was observed. Irradiation at doses of 340 and 831 J/cm2 led to significant reductions in bacterial growth and viability; as determined by CFU counting and live/dead staining. Data suggests that phototherapy approaches utilising a 405 nm wavelength have therapeutic potential to limit cariogenic bacterial infections both at the surface and within dentine.


Assuntos
Dentina/efeitos da radiação , Desinfecção/métodos , Luz , Adulto , Cor , Dentina/microbiologia , Feminino , Humanos , Masculino , Viabilidade Microbiana/efeitos da radiação , Streptococcus mutans/fisiologia , Streptococcus mutans/efeitos da radiação , Adulto Jovem
4.
Int J Food Microbiol ; 332: 108811, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32835914

RESUMO

The aim of this study was to evaluate a hurdle strategy for orange-tangerine (OT) and orange-banana-mango-kiwi-strawberry (OBMKS) juices processing based on UV-C treatment assisted or not by mild heat and the addition of natural antimicrobials. Vanillin and citral emulsions were successfully encapsulated using maltodextrin and HI-CAP (5,18,3) and characterized. The susceptibility of Lactobacillus plantarum ATCC 8014, Escherichia coli ATCC 25922, and Saccharomyces cerevisiae KE 162 to binary mixtures of the encapsulated agents was examined in culture media according to the Berenbaum experimental design. The boundary between growth and non-growth as a function of vanillin and citral concentrations was predicted by means of the probabilistic model using logistic regression. Microbial inactivation achieved by pilot-scale UV-C light (0-390 mJ/cm2) on its own, assisted by mild heat (50 °C, UV-C/H) and combined with antimicrobials (1000 ppm vanillin plus 100 ppm citral) addition (UV-C + A/UV-C/H + A) was assessed in OT and OBMKS. Yeast induced damage in a model solution treated by UV-C + A was studied by flow cytometry (FC). All the antimicrobial mixtures resulted in additive effects (FICindex = 1), thus offering through the probabilistic models a range of formulation possibilities with antimicrobial capacity encompassing lower vanillin and citral concentrations compared to those required when used alone (Vrange = 0-1875 ppm plus Crange = 392-0 ppm). UV-C led up to 3.7-3.8, 2.4-3.6 and 1.5-1.6 log-reductions of E. coli, L. plantarum and S. cerevisiae in OT and OBMKS, respectively. A significant increase of 1.7-2.2, 2.1-2.7 and 4.1-5.3 log cycles in microbial inactivation was observed after UV-C/H treatment. Additional inactivation of 0.7-3.1 and 0.5-2.7 log reductions were observed for E. coli and S. cerevisiae, respectively, when UV-C + A and UV-C/H + A were applied in both juices. Therefore, the addition of antimicrobials to the UV-C treated juices, showed additive to synergistic effects on E. coli and S. cerevisiae, respectively along refrigerated storage. A shift from yeast cells with intact membrane and esterase activity in control samples to cells with permeabilized membrane in C + A, UV-C and UV-C + A samples were determined by FC. The shift was more noticeable in UV-C + A samples. Sublethally damaged cells were only detected in C + A and UV-C samples. This study demonstrates that combining a pilot-scale UV-C treatment with the addition of chosen binary mixtures of vanillin and citral, can ensure more than 5 log-reductions of E. coli, L. plantarum and S. cerevisiae in OT and OBKMS juice blends.


Assuntos
Monoterpenos Acíclicos/farmacologia , Benzaldeídos/farmacologia , Conservação de Alimentos/métodos , Sucos de Frutas e Vegetais/microbiologia , Raios Ultravioleta , Monoterpenos Acíclicos/química , Antibacterianos/química , Antibacterianos/farmacologia , Benzaldeídos/química , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Temperatura Alta , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação
5.
Int J Food Microbiol ; 332: 108767, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32593099

RESUMO

Consumer growing demands for high-quality and safe food and beverages have stimulated the interest in alternative preservation technologies. Short-wavelength ultraviolet light (UV-C, 254 nm) has proven to be useful for the decontamination of a great variety of clear juices while improving their quality compared to traditional thermal treatments. Suspended solids and coloured compounds in turbid juices, diminish light transmission. The use of UV-C under a hurdle approach, may be a promising strategy for their treatment. The purpose of this study was to analyse Escherichia coli ATCC 25922, Saccharomyces cerevisiae KE 162 and Lactobacillus plantarum ATCC 8014 inactivation in clear pear juice (PJ), turbid orange-tangerine (OT) and orange-banana-mango-kiwi-strawberry (OBMKS) juices processed by single UV-C (390 mJ/cm2, 20 °C) and UV-C assisted by mild heat (UV-C/H, 50 °C) at pilot-scale in a coiled tubing unit and stored under refrigeration (5 °C). Inactivation studies were also conducted in peptone water (PW) and model solution (MS). The adequacy of the Coroller, Weibull and Biphasic Plus Shoulder models was studied. UV-C was highly effective in PW, MS and PJ, achieving up to 5.5-6.3-4.7, 4.8-5.1-4.6 and 4.4-5.5 log reductions for L. plantarum, E. coli,and S. cerevisiae, respectively. Whereas, a moderate inactivation by single UV-C was recorded in the turbid blends, reducing up to 2.4-3.8-1.6 and 3.6-3.7-1.3 log-cycles in OT and OBMKS, respectively. When the UV-C/H treatment was applied, high bacterial inactivation was observed achieving 5.2-5.6, 6.3-6.6 and 5.5-6.7 log reductions in OT, OBMKS and PJ, respectively, while 4.6-4.9 log reductions were determined for the yeast in OBMKS and OT, respectively. Thus, additive inactivation effects between UV-C and H were observed. All the models tested gave useful information regarding the existence of microbial subpopulations with varying resistances. However, the cumulative Weibull distribution function was the most versatile one, fitting inactivation curves with different shapes. Additionally, the frequency distributions of resistances showed that UV-C/H not only increased the UV-C microbicidal effect but changed the distribution of inactivation times. Principal component analysis revealed that UV-C effectiveness was associated to low particle size, a⃰, turbidity and high UV-C transmittance. An increase on the inactivation of treated bacterial populations was recorded along storage, while no yeast recovery was observed, thus emphasizing the contribution of refrigerated storage to microbial inactivation. Microbial inactivation in clear and turbid juices achieved by UV-C (390 mJ/cm2) assisted by mild heat (50 °C) and subsequent refrigerated storage may represent an useful alternative for multiple applications in the juice industry.


Assuntos
Escherichia coli/efeitos da radiação , Sucos de Frutas e Vegetais/microbiologia , Lactobacillus plantarum/efeitos da radiação , Pasteurização/métodos , Saccharomyces cerevisiae/efeitos da radiação , Contagem de Colônia Microbiana , Escherichia coli/crescimento & desenvolvimento , Microbiologia de Alimentos , Temperatura Alta , Lactobacillus plantarum/crescimento & desenvolvimento , Viabilidade Microbiana/efeitos da radiação , Saccharomyces cerevisiae/crescimento & desenvolvimento , Raios Ultravioleta
6.
J Med Microbiol ; 69(4): 617-624, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32100708

RESUMO

Introduction. Growing concern about the increasing frequency of resistance of Helicobacter pylori to the available antimicrobial agents worldwide has encouraged the search for new strategies in treating and eradicating H. pylori infections. Endoscopic blue-light therapy has been used in patients with H. pylori gastritis with limited success due to subsequent repopulation with H. pylori. Clinical trials using Curcumin could not eradicate infection either.Aim. We studied the effect of blue light emitting diodes (LEDs) in conjunction with Curcumin on H. pylori, since this has not been previously reported.Methodology. We examined the effect of Curcumin with and without irradiation with blue LEDs on the viability of H. pylori and four key factors important for colonization and establishment of H. pylori infection, namely urease production, motility, adhesion and biofilm formation.Results. We found that a combination of Curcumin and blue LEDs caused significant reductions in viability, urease production, motility, haemagglutination activity, as well as increased disruption of mature preformed biofilms of H. pylori, in comparison to Curcumin alone (P<0.0001), at sublethal concentrations of Curcumin.Conclusion. Targeting the virulence factors of H. pylori with blue LED photoactivated Curcumin would theoretically cripple this pathogen from colonizing and causing tissue damage and perhaps overcome the problem of repopulation with H. pylori that often occurs following endoscopic blue-light therapy.


Assuntos
Antibacterianos/farmacologia , Curcumina/farmacologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/efeitos da radiação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Helicobacter pylori/crescimento & desenvolvimento , Helicobacter pylori/patogenicidade , Humanos , Luz , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Virulência/efeitos dos fármacos , Virulência/efeitos da radiação , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
7.
Lasers Med Sci ; 35(6): 1329-1339, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31900692

RESUMO

Anti-fungal blue light (ABL) therapies have been widely studied to treat various microbial infections in the literature. The blue light with wavelengths ranging from 400 to 470 nm has been reported to be effective to inhibit various kinds of bacteria and fungi. The existing studies usually report the viability rates of the pathogens under the irradiation of the blue light with different dosage parameters. However, to the best of our knowledge, there is still no work especially focusing on studying the effect of ABL therapies on treating candida vaginitis, where it is important to study the viability of both the Candida albicans (C. albicans) and the human vaginal epithelial cells. It is the purpose of this work to conduct ABL experiments on both of these two cells, analyze the effects, and determine the best ABL wavelength out of three candidates, i.e., 405-nm, 415-nm, and 450-nm wavelength. The viability rates of the C. albicans and the human vaginal epithelial cells irradiated by the three blue LED light sources were measured, whose irradiance (power density) were all set to 50 mW/cm2. The dynamic viability models of the C. albicans and the epithelial cells were built based on the experimental data. Moreover, in this work, we also built a functional relationship between the viability of these two types of cells, by which we further compared the effects of the blue light irradiation on both the C. albicans and vaginal epithelial cells. The experimental data showed that when an approximately 80% inhibiting rate of the C. albicans was achieved, the survival rates of the epithelial cells were 0.6700, 0.7748, and 0.6027, respectively for the treatment by the 405-nm, 415-nm, and 450-nm wavelength light. On the other hand, by simulating the functional relationship between the viability of the two types of cells, the survival rates of the epithelial cells became 0.5783, 0.6898, and 0.1918 respectively using the 405-nm, 415-nm and 450-nm wavelength light, when the C. albicans was completely inhibited. Therefore, both the experimental data and the model simulation results have demonstrated that the 415-nm light has a more effective anti-fungal result with less damage to the epithelial cells than the 405-nm and 450-nm light.


Assuntos
Candidíase Vulvovaginal/terapia , Luz , Fototerapia , Candida albicans/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Cor , Células Epiteliais/microbiologia , Células Epiteliais/efeitos da radiação , Feminino , Humanos , Viabilidade Microbiana/efeitos da radiação , Modelos Biológicos
8.
IET Nanobiotechnol ; 13(8): 800-807, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31625519

RESUMO

Widespread resistance to antibiotics amongst pathogens has become a tremendous challenge of high morbidity and mortality rates which increases the needs to exploring novel methods of treatment. An efficient antimicrobial procedure to root out pathogenic bacteria is photothermal therapy. In this study, antimicrobial effects of a polypyrrole-carbon nanocomposite (PPy-C) upon laser irradiation in order to destroy the pathogenic gram-positive bacterium, methicillin-resistant Staphylococcus aureus (MRSA) were assessed. The bacterial cells were incubated with 500, 750 and 1000 µg ml-1 concentrations of PPy-C and irradiated with an 808-nm laser at a power density of 1.0 W cm-2. To indicate the biocompatibility and toxic effect of the nanocomposite without and with laser irradiation, the authors counted the number of CFUs and compared it to an untreated sample. Antibacterial mechanisms of PPy-C were assessed through temperature increment, reactive oxygen species production, and protein and DNA leakages. Photothermal heating assay showed that 26°C temperature increases in the presence of 1000 µg ml-1 PPy-C led to >98% killing of MRSA. Furthermore, 20 min radiation of near-infrared light to PPy-C in different concentrations indicated destruction and reduction in the MRSA biofilm formation. Therefore, PPy-C was introduced as a photothermal absorber with a bactericidal effect in MRSA.


Assuntos
Biofilmes , Carbono/química , Temperatura Alta/uso terapêutico , Staphylococcus aureus Resistente à Meticilina , Nanocompostos/uso terapêutico , Fototerapia/métodos , Polímeros/química , Pirróis/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos da radiação , Carbono/farmacologia , Carbono/uso terapêutico , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/uso terapêutico , Humanos , Teste de Materiais , Resistência a Meticilina/efeitos dos fármacos , Resistência a Meticilina/efeitos da radiação , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos da radiação , Nanocompostos/química , Polímeros/farmacologia , Polímeros/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico , Infecções Estafilocócicas/terapia
9.
IET Nanobiotechnol ; 13(8): 875-879, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31625530

RESUMO

Hospital wastewater is a major contributor of disease-causing microbes and the emergence of antibiotic resistant bacteria. In this study, thiolated iron-doped nanoceria was synthesised and tested for killing of microbes from hospital effluent. These particles were designed to inhibit the efflux pumps of the bacteria found in hospital effluent with further ability to activate in visible light via iron doping thus generating tunable amount of reactive oxygen species (ROS). The quantum yield of the ROS generated by the nanoceria was 0.67 while the ROS types produced were singlet oxygen (36%), hydroxyl radical (31%) and hydroxyl ions (32%), respectively. The particles were initially synthesised through green route using Foeniculum vulgare seeds extract and were annealed at 200°C and further coated with thiolated chitosan to enhance the solubility and efflux pump inhibition. X-ray diffraction confirmed the polycrystalline nature of nanoparticles and uniform spherical shape with 30 nm size, confirmed by scanning electron microscope. The nanoparticles exhibited 100% bactericidal activity at 100 µg/mL against all the isolated bacteria. The enhanced bactericidal effect of iron-doped nanoceria could be attributed to efflux inhibition via thiolated chitosan as well as the production of ROS upon illumination in visible light, causing oxidative stress against microbes found in hospital effluent.


Assuntos
Cério/química , Ferro/química , Viabilidade Microbiana/efeitos da radiação , Fototerapia/métodos , Compostos de Sulfidrila/química , Águas Residuárias/microbiologia , Purificação da Água , Bactérias/efeitos da radiação , Cério/farmacologia , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Desinfecção/métodos , Foeniculum/química , Química Verde , Hospitais , Ferro/farmacologia , Luz , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Nanopartículas/química , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/efeitos da radiação , Sementes/química , Esgotos/microbiologia , Compostos de Sulfidrila/farmacologia , Compostos de Enxofre/química , Compostos de Enxofre/farmacologia , Purificação da Água/métodos
10.
Future Microbiol ; 14: 739-748, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31271058

RESUMO

Staphylococcus aureus are multiresistant pathogens that causes superficial and systemic infections. Antimicrobial photodynamic therapy (APDT) is an alternative in the treatment of diseases caused by these bacteria. Aim: In this study the APDT response on growth, viability, formation of reactive oxygen species and adhesion of methicillin-sensitive strains of Staphylococcus aureus, strains of methicillin-resistant S. aureus and American-type culture collection (ATCC) of S. aureus were evaluated in vitro, after incubation with curcumin for 20 min, and irradiated with LED. Materials & methods: Bacterial growth was assessed by the number of colony-forming units, viability and adhesion were evaluated by confocal microscopy and ROS quantification was performed by fluorimetry. Results: Was observed increase in the production of ROS in APDT groups, besides a decrease in the 4 log growth and loss of the bacterial adhesion. Conclusion: APDT with Curcumin may be an interesting therapeutic alternative, due to its in vitro response, in the control multiresistant clinical S. aureus strains.


Assuntos
Curcumina/farmacologia , Luz , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Fármacos Fotossensibilizantes/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/efeitos da radiação , Aderência Bacteriana/efeitos dos fármacos , Aderência Bacteriana/efeitos da radiação , Contagem de Colônia Microbiana , Fluorometria , Microscopia Confocal , Espécies Reativas de Oxigênio/análise , Staphylococcus aureus/crescimento & desenvolvimento
11.
Int J Mol Sci ; 20(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340560

RESUMO

BACKGROUND: Due to current antibiotic resistance worldwide, there is an urgent need to find new alternative antibacterial approaches capable of dealing with multidrug-resistant pathogens. Most recent studies have demonstrated the antibacterial activity and non-cytotoxicity of carbon nanomaterials such as graphene oxide (GO) and carbon nanofibers (CNFs). On the other hand, light-emitting diodes (LEDs) have shown great potential in a wide range of biomedical applications. METHODS: We investigated a nanotechnological strategy consisting of GO or CNFs combined with light-emitting diod (LED) irradiation as novel nanoweapons against two clinically relevant Gram-positive multidrug-resistant pathogens: methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE). The cytotoxicity of GO and CNFs was studied in the presence of human keratinocyte HaCaT cells. RESULTS: GO or CNFs exhibited no cytotoxicity and high antibacterial activity in direct contact with MRSE and MRSA cells. Furthermore, when GO or CNFs were illuminated with LED light, the MRSE and MRSA cells lost viability. The rate of decrease in colony forming units from 0 to 3 h, measured per mL, increased to 98.5 ± 1.6% and 95.8 ± 1.4% for GO and 99.5 ± 0.6% and 99.7 ± 0.2% for CNFs. CONCLUSIONS: This combined antimicrobial approach opens up many biomedical research opportunities and provides an enhanced strategy for the prevention and treatment of Gram-positive multidrug-resistant infections.


Assuntos
Antibacterianos/farmacologia , Grafite/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Nanoestruturas/química , Nanotubos de Carbono/química , Staphylococcus epidermidis/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Técnicas de Cocultura , Relação Dose-Resposta à Radiação , Humanos , Queratinócitos/citologia , Queratinócitos/fisiologia , Queratinócitos/efeitos da radiação , Luz , Resistência a Meticilina/efeitos da radiação , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos da radiação , Nanoestruturas/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Fototerapia/métodos , Staphylococcus epidermidis/crescimento & desenvolvimento
12.
Sci Rep ; 9(1): 20325, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889168

RESUMO

Due to increasing antibiotic resistance, the application of antimicrobial photodynamic therapy (aPDT) is gaining increasing popularity in dentistry. The aim of this study was to investigate the antimicrobial effects of aPDT using visible light (VIS) and water-filtered infrared-A (wIRA) in combination with a Hypericum perforatum extract on in situ oral biofilms. The chemical composition of H. perforatum extract was analyzed using ultra-high-performance liquid chromatography coupled with high resolution mass spectrometry (UPLC-HRMS). To obtain initial and mature oral biofilms in situ, intraoral devices with fixed bovine enamel slabs (BES) were carried by six healthy volunteers for two hours and three days, respectively. The ex situ exposure of biofilms to VIS + wIRA (200 mWcm-2) and H. perforatum (32 mg ml-1, non-rinsed or rinsed prior to aPDT after 2-min preincubation) lasted for five minutes. Biofilm treatment with 0.2% chlorhexidine gluconate solution (CHX) served as a positive control, while untreated biofilms served as a negative control. The colony-forming units (CFU) of the aPDT-treated biofilms were quantified, and the surviving microorganisms were identified using MALDI-TOF biochemical tests as well as 16 S rDNA-sequencing. We could show that the H. perforatum extract had significant photoactivation potential at a concentration of 32 mg ml-1. When aPDT was carried out in the presence of H. perforatum, all biofilms (100%) were completely eradicated (p = 0.0001). When H. perforatum was rinsed off prior to aPDT, more than 92% of the initial viable bacterial count and 13% of the mature oral biofilm were killed. Overall, the microbial composition in initial and mature biofilms was substantially altered after aPDT, inducing a shift in the synthesis of the microbial community. In conclusion, H. perforatum-mediated aPDT using VIS + wIRA interferes with oral biofilms, resulting in their elimination or the substantial alteration of microbial diversity and richness. The present results support the evaluation of H. perforatum-mediated aPDT for the adjunctive treatment of biofilm-associated oral diseases.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/efeitos da radiação , Hypericum/química , Raios Infravermelhos , Luz , Extratos Vegetais/farmacologia , Anti-Infecciosos/química , Bactérias/efeitos dos fármacos , Bactérias/efeitos da radiação , Aderência Bacteriana , Cromatografia Líquida de Alta Pressão , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Mucosa Bucal/microbiologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Espectrometria de Massas por Ionização por Electrospray
13.
Biocontrol Sci ; 23(3): 121-128, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30249961

RESUMO

Inhibitory effects of the powders of paprika, red pepper, black pepper, sage, oregano and thyme in a solid medium after heat treatment and gamma-irradiation on the development from spore of Bacillus subtilis were examined using calorimetry. Based on the f(t) curve (Antoce et al., 1996) from the thermogram obtained, two parameters, the growth rate constant and the growth retardation time, were used to evaluate the inhibitory effect. The inhibitory effects of paprika and red pepper powders were enhanced by the spore pretreatment with heat, but not significantly with irradiation. The inhibitory enhancement by preheating depended upon the kind of spices used. Sage, oregano and thyme powders per se inhibited the development from spores completely even at a low concentration of 0.04 g/ml. Inhibitory effects of paprika and red pepper powders were obviously observed with heat treatment but not with irradiation. With black pepper powder, by contrast, substantial enhancement was neither observed with heat treatment nor gamma-irradiation. The results suggested that the addition of those spice powders might be useful in the thermal inactivation process of solid foods contaminated with Bacillus subtilis spores.


Assuntos
Bacillus subtilis/efeitos da radiação , Raios gama , Preparações de Plantas/farmacologia , Especiarias/análise , Esporos Bacterianos/efeitos da radiação , Bacillus subtilis/crescimento & desenvolvimento , Calorimetria , Capsicum/química , Relação Dose-Resposta a Droga , Temperatura Alta , Viabilidade Microbiana/efeitos da radiação , Origanum/química , Piper nigrum/química , Pós , Salvia officinalis/química , Esporos Bacterianos/crescimento & desenvolvimento , Thymus (Planta)/química
14.
Microb Pathog ; 123: 144-148, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29981853

RESUMO

High intensity ultrasound is becoming important and more widely used in the food industry for microorganisms decontamination. This sterilization technique has been evaluated to improve food safety and to replace common processing with chemical additive compounds. The efficiency of a horn-type power ultrasound treatment (300 W and 600 W, 28 kHz, 10-30 min) on Listeria monocytogenes, Bacillus cereus, Escherichia coli, Salmonella typhimurium bacteria suspensions and phytoviruses was examined in this study. The results of this study showed that ultrasonic treatment can be used to eliminate vegetative cells of gram-positive and gram-negative bacteria from 1.59 to 3.4 log in bacterial suspensions and some phytoviruses in fruits.


Assuntos
Bactérias/efeitos da radiação , Irradiação de Alimentos/métodos , Microbiologia de Alimentos , Conservação de Alimentos/métodos , Ultrassom/métodos , Vírus/efeitos da radiação , Bacillus cereus/crescimento & desenvolvimento , Bacillus cereus/efeitos da radiação , Bactérias/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/efeitos da radiação , Contaminação de Alimentos/prevenção & controle , Indústria Alimentícia , Inocuidade dos Alimentos , Frutas/virologia , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/efeitos da radiação , Viabilidade Microbiana/efeitos da radiação , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/efeitos da radiação , Ultrassom/instrumentação , Vírus/crescimento & desenvolvimento
15.
Int J Food Microbiol ; 269: 89-97, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29421364

RESUMO

Radio frequency (RF) heating has been successfully used for inactivating microorganisms in agricultural and food products. Athermal (non-thermal) effects of RF energy on microorganisms have been frequently proposed in the literature, resulting in difficulties for developing effective thermal treatment protocols. The purpose of this study was to identify if the athermal inactivation of microorganisms existed during RF treatments. Escherichia coli and Staphylococcus aureus in apple juice and mashed potato were exposed to both RF and conventional thermal energies to compare their inactivation populations. A thermal death time (TDT) heating block system was used as conventional thermal energy source to simulate the same heating treatment conditions, involving heating temperature, heating rate and uniformity, of a RF treatment at a frequency of 27.12 MHz. Results showed that a similar and uniform temperature distribution in tested samples was achieved in both heating systems, so that the central sample temperature could be used as representative one for evaluating thermal inactivation of microorganisms. The survival patterns of two target microorganisms in two food samples were similar both for RF and heating block treatments since their absolute difference of survival populations was <1 log CFU/ml. The statistical analysis indicated no significant difference (P > 0.05) in inactivating bacteria between the RF and the heating block treatments at each set of temperatures. The solid temperature and microbial inactivation data demonstrated that only thermal effect of RF energy at 27.12 MHz was observed on inactivating microorganisms in foods.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Sucos de Frutas e Vegetais/microbiologia , Calefação/métodos , Malus/microbiologia , Pasteurização/métodos , Ondas de Rádio , Solanum tuberosum/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Alimentos , Microbiologia de Alimentos/métodos , Temperatura Alta , Viabilidade Microbiana/efeitos da radiação
16.
Int J Mol Sci ; 19(2)2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29364155

RESUMO

Candida albicans is the most commonly encountered human fungal pathogen, and it is traditionally treated with antimicrobial chemical agents. The antimicrobial effect of these agents is largely weakened by drug resistance and biofilm-associated virulence. Enhancement of the antimicrobial activity of existing agents is needed for effective candidiasis treatment. Our aim was to develop a therapy that combined biofilm disruption with existing antimicrobial agents. Photodynamic therapy (PDT) utilizing curcumin and blue light was tested as an independent therapy and in combination with fluconazole treatment. Viability assays and morphology analysis were used to assess the effectiveness of C. albicans treatment. Results showed that fluconazole treatment decreased the viability of planktonic C. albicans, but the decrease was not as pronounced in adherent C. albicans because its biofilm form was markedly more resistant to the antimicrobiotic. PDT effectively eradicated C. albicans biofilms, and when combined with fluconazole, PDT significantly inhibited C. albicans to a greater extent. This study suggests that the addition of PDT to fluconazole to treat C. albicans infection enhances its effectiveness and can potentially be used clinically.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/efeitos da radiação , Fotoquimioterapia , Antifúngicos/uso terapêutico , Biofilmes/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Candidíase/microbiologia , Candidíase/terapia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Terapia Combinada , Curcumina/farmacologia , Curcumina/uso terapêutico , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Radicais Livres/metabolismo , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Oxigênio Singlete/metabolismo
17.
Lasers Med Sci ; 33(1): 67-73, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28963589

RESUMO

The aim of the present study was to evaluate, in vitro, the effect of different pre-irradiation times of the photosensitizer in photodynamic therapy in biofilms formed by Streptococcus mutans and Candida albicans, through the evaluation of the microbial load. The factors under study were as follows: times of pre-irradiation of the photosensitizer in three levels (1, 2, or 5 min). For the control of the cariogenic dental biofilm with antimicrobial photodynamic therapy (aPDT), methylene blue (0.01%) was used in association with the diode laser (InGaAlP) with a wavelength of 660 nm. Chlorhexidine digluconate (0.12% CHX) and saline were used as positive and negative controls, respectively. The study design was carried out in complete and randomized blocks. The sample consisted of 15 S. mutans biofilms cultures, randomly divided into five groups and 15 C. albicans cultures, also divided into five groups. The experiment was performed in triplicate (n = 3) and the response variables were obtained through quantitative analysis of bacterial viability, expressed in colony-forming units (CFU) per square millimeter of the specimen area. The data were analyzed with the aid of the ANOVA one-way test and Tukey's post-test. All analyses were performed using the Graph Pad Prism 4.0 program, with a significance level of 5%. For the S. mutans group, only the saline solution presented a statistically significant difference when compared to the other treatments (p < 0.05), that is, the treatment with aPDT, irrespective of the irradiation time applied, was similar to the treatment with CHX and both were more effective in reducing cariogenic biofilm compared to saline. For the group of C. albicans, there was no statistical difference between the groups (p > 0.05). Therefore, it can be concluded that the treatment with aPDT reduced the number of CFUs of S. mutans in a similar way to CHX, independently of the pre-irradiation time applied. No effect of this therapy or of the different pre-irradiation times on the C. albicans biofilm could be observed. In this way, the pre-irradiation time of 1 min can be used to reduce the microbial load of S. mutans.


Assuntos
Antibacterianos/farmacologia , Lasers Semicondutores , Fotoquimioterapia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Candida albicans/efeitos da radiação , Clorexidina/análogos & derivados , Clorexidina/farmacologia , Contagem de Colônia Microbiana , Humanos , Azul de Metileno/farmacologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Fármacos Fotossensibilizantes/farmacologia , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/crescimento & desenvolvimento , Streptococcus mutans/efeitos da radiação , Fatores de Tempo
18.
J Photochem Photobiol B ; 173: 301-306, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28623822

RESUMO

The global concerns regarding the emergence of fungicide-resistant strains and the impact of the excessive use of fungicidal practises on our health, food, and environment have increased, leading to a demand for alternative clean green technologies as treatments. Photosensitization is a treatment that utilises a photosensitiser, light and oxygen to cause cell damage to microorganisms. The effect of photosensitization mediated by curcumin on Aspergillus niger, Aspergillus flavus, Penicillium griseofulvum, Penicillium chrysogenum, Fusarium oxysporum, Candida albicans and Zygosaccharomyces bailii was investigated using three methods. The viability of spores/cells suspended in aqueous buffer using different concentrations of curcumin solution (100-1000µM) and light dose (0, 24, 48, 72 and 96J/cm2) were determined. Spraying curcumin solution on inoculated surfaces of agar plates followed by irradiation and soaking spores/cells in curcumin solution prior to irradiation was also investigated. In aqueous mixtures, photosensitised spores/cells of F. oxysporum and C. albicans were inhibited at all light doses and curcumin concentrations, while inactivation of A. niger, A. flavus P. griseofulvum, P. chrysogenum and Z. bailii were highly significant (P<0.001) reduced by 99%, 88.9%, 78%, 99.7% and 99.2% respectively. On the surface of agar plates, spores/cells exposed to a light dose of 360J/cm2 sprayed with curcumin at 800µM showed complete inhibition for A. niger, F. oxysporum, C. albicans and Z. bailii, while A. flavus P. griseofulvum, and P. chrysogenum reduced by 75%, 80.4% and 88.5% respectively. Soaking spores/cells with curcumin solution prior to irradiation did not have a significant effect on the percentage reduction. These observations suggest that a novel photosensitization mediated curcumin treatment is effective against fungal spores/cells and the variation of percentage reduction was dependent on curcumin concentration, light dosage and fungal species.


Assuntos
Curcumina/farmacologia , Fungos/fisiologia , Luz , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Fármacos Fotossensibilizantes/farmacologia , Esporos Fúngicos/fisiologia , Fungos/citologia , Fungos/efeitos dos fármacos , Fungos/efeitos da radiação , Esporos Fúngicos/citologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/efeitos da radiação
19.
Lasers Med Sci ; 32(4): 857-864, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28283813

RESUMO

Effective decontamination of biofilm and bacterial toxins from the surface of dental implants is a yet unresolved issue. This study investigates the in vitro efficacy of photodynamic treatment (PDT) with methylene blue (MB) photoactivated with λ 635 nm diode laser and of λ 405 nm violet-blue LED phototreatment for the reduction of bacterial biofilm and lipopolysaccharide (LPS) adherent to titanium surface mimicking the bone-implant interface. Staphylococcus aureus biofilm grown on titanium discs with a moderately rough surface was subjected to either PDT (0.1% MB and λ 635 nm diode laser) or λ 405 nm LED phototreatment for 1 and 5 min. Bactericidal effect was evaluated by vital staining and residual colony-forming unit count. Biofilm and titanium surface morphology were analyzed by scanning electron microscopy (SEM). In parallel experiments, discs coated with Escherichia coli LPS were treated as above before seeding with RAW 264.7 macrophages to quantify LPS-driven inflammatory cell activation by measuring the enhanced generation of nitric oxide (NO). Both PDT and LED phototreatment induced a statistically significant (p < 0.05 or higher) reduction of viable bacteria, up to -99 and -98% (5 min), respectively. Moreover, besides bactericidal effect, PDT and LED phototreatment also inhibited LPS bioactivity, assayed as nitrite formation, up to -42%, thereby blunting host inflammatory response. Non-invasive phototherapy emerges as an attractive alternative in the treatment of peri-implantitis to reduce bacteria and LPS adherent to titanium implant surface without causing damage of surface microstructure. Its efficacy in the clinical setting remains to be investigated.


Assuntos
Biofilmes/efeitos da radiação , Escherichia coli/efeitos da radiação , Luz , Lipopolissacarídeos/farmacologia , Fotoquimioterapia , Staphylococcus aureus/efeitos da radiação , Titânio/farmacologia , Animais , Escherichia coli/efeitos dos fármacos , Escherichia coli/ultraestrutura , Fluorescência , Lasers Semicondutores , Camundongos , Viabilidade Microbiana/efeitos da radiação , Células RAW 264.7 , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/ultraestrutura , Titânio/química
20.
ACS Appl Mater Interfaces ; 7(37): 20965-71, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26360157

RESUMO

Herein, we present a straightforward strategy to disperse highly insoluble photosensitizers in aqueous environments, without major synthetic efforts and keeping their photosensitizing abilities unaffected. A layered nanoclay was employed to adsorb and to solubilize a highly efficient yet hydrophobic Si(IV) phthalocyaninate in water. The aggregation of the photoactive dye was correlated with its photophysical properties, particularly with the ability to produce highly cytotoxic singlet oxygen. Moreover, the resulting hybrid nanomaterial is able to selectively photoinactivate Gram-positive pathogens, due to local interactions between the bacterial membranes and the negatively charged nanodiscs. Nanotoxicity assays confirmed its innocuousness toward eukaryotic cells, showing that it constitutes a new class of "phototriggered magic bullet" for the inactivation of pathogens in phototherapy, as well as in the development of coatings for self-disinfecting surfaces.


Assuntos
Bactérias Gram-Positivas/efeitos da radiação , Luz , Viabilidade Microbiana/efeitos da radiação , Nanoestruturas/química , Contagem de Colônia Microbiana , Difusão Dinâmica da Luz , Bactérias Gram-Positivas/crescimento & desenvolvimento , Microscopia de Fluorescência , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA