Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Curr Microbiol ; 80(9): 288, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37458864

RESUMO

In a previous study, we isolated a Vibrio sp. strain MA3 and its virulence factor, a hemolysin encoded by vhe1. This strain is associated with mass mortalities of the pearl oyster Pinctada fucata. In the present study, the vhe1 gene from strain MA3 was cloned and its encoded product was purified and characterized. Our results show that the vhe1 gene encodes a protein of 417 amino acids with an estimated molecular mass of 47.2 kDa and a pI of 5.14. The deduced protein, Vhe1, was found to contain the conserved amino acid sequence (GDSL motif) of the hydrolase/esterase superfamily and five conserved blocks characteristic of SGNH hydrolases. A BLAST homology search indicated that Vhe1 belongs the lecithin-dependent hemolysin/thermolabile hemolysin (LDH/TLH) family. In activity analyses, the optimal temperature for both the hemolytic and phospholipase activities of Vhe1 was 50 °C. Vhe1 hemolytic activity and phospholipase activity were highest at pH 8.5 and pH 8.0, respectively. However, both enzymatic activities sharply decreased at high temperature (> 50 °C) and pH < 7.0. Compared with previously reported hemolysins, Vhe1 appeared to be more thermal- and pH-labile. Both its hemolytic activity and phospholipase activity were significantly inhibited by CuCl2, CdCl2, ZnCl2, and NiCl2, and slightly inhibited by MnCl2 and CoCl2. Vhe1 showed higher phospholipase activity toward medium-chain fatty acids (C8-C12) than toward shorter- and longer-chain fatty acids. These results accumulate knowledge about the LDH/TLH of V. alginolyticus, which detailed characterization has not been reported, and contribute to solving of the mass mortality of pearl oyster.


Assuntos
Pinctada , Vibrio , Animais , Pinctada/genética , Pinctada/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Lecitinas , Vibrio/genética , Vibrio/metabolismo , Fosfolipases/genética , Clonagem Molecular
2.
Fitoterapia ; 168: 105559, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37271296

RESUMO

Four new oxepine-containing pyrazinopyrimidine alkaloids, versicoxepines A - D (1-4), two quinolinone alkaloid analogs including 3-hydroxy-6-methoxy-4-phenylquinolin-2(1H)-one (5) and 3-methoxy-6-hydroxy-4-phenylquinolin-2(1H)-one (6) which were new naturally occurring compounds, together with two known compounds (7 and 8) were isolated from Aspergillus versicolor AS-212, an endozoic fungus isolated from the deep-sea coral Hemicorallium cf. imperiale, which was collected from the Magellan Seamounts in the Western Pacific Ocean. Their structures were determined by extensive analysis of the spectroscopic and X-ray crystallographic data as well as by chiral HPLC analysis, ECD calculation, and DP4+ probability prediction. Structurally, versicoxepines B and C (2 and 3) represent the first example of a new oxepine-containing pyrazinopyrimidine alkaloid whose cyclic dipeptide moiety is composed of the same type of amino acid (Val or Ile). Compound 5 displayed antibacterial activity against aquatic pathogens, Vibrio harveyi and V. alginolyticus, with MICs of 8 µg/mL.


Assuntos
Alcaloides , Aspergillus , Quinolonas , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Aspergillus/química , Estrutura Molecular , Oxepinas/química , Quinolonas/química , Quinolonas/isolamento & purificação , Quinolonas/farmacologia , Oceano Pacífico , Cristalografia por Raios X , Antibacterianos/farmacologia , Vibrio/efeitos dos fármacos , Espectroscopia de Ressonância Magnética
3.
J Invertebr Pathol ; 197: 107872, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36566013

RESUMO

To prevent loss from disease, immunostimulants have been used as dietary supplements to improve immunity and survival of shrimps. Among the various types of immunostimulants, there is increasing evidence that a diet enriched with bacterial lipopolysaccharide can reduce the mortality rate of shrimp under exposure to pathogens. Here, the immunostimulatory effects of bacterial lipopolysaccharide (LPS) from various bacterial sources were explored. Bacterial LPS was extracted from a shrimp pathogen, Vibrio harveyi and its effects were compared with the commercially available LPS from the non-shrimp pathogen, Escherichia coli. Our results revealed that the LPS from V. harveyi was different in molecular size but contained similar functional groups to that from E. coli. To understand their molecular mechanisms, bacterial LPS from the two sources were applied as a supplementary diet and fed to juvenile shrimp for 4-week feeding period before tissue samples were collected for transcriptomic analysis by next generation sequencing. Gene expression profiling revealed that major immune-related genes such as pattern recognition proteins (PRPs), proteinases and proteinase inhibitors, prophenoloxidase systems (proPO system), antimicrobial peptides (AMPs), signaling transduction pathways, heat shock proteins (HSPs), oxidative stress responses, and other immune-related molecules such as mucins and peritrophins were modulated in the groups of shrimp fed with bacterial LPS from both sources, but at different levels. The results suggest that bacterial LPS could modulate shrimp immune system, and different LPS sources led to different activation of immune pathways. Additionally, metabolic-related genes were affected by LPS, suggesting that energy was required for immune stimulation. In the V. harveyi pathogen challenge trial, all shrimp groups fed with diets containing LPS from both bacterial sources showed better survival than the control group without LPS. When comparing groups fed with LPS supplemented diets, the higher concentration of LPS (8 µg/body weight) from E. coli resulted in a better survival rate than a lower concentration (4 µg/body weight). Conversely, shrimp fed with a diet containing LPS from V. harveyi showed a lower survival rate when a higher dose of LPS (8 µg/body weight) was administered than the group fed with a lower concentration of LPS (4 µg/body weight). This could be due to overstimulation of shrimp immune responses, especially by LPS derived from shrimp pathogens, resulting in a reverse effect. These results confirm that immunity in shrimp upon administration of bacterial LPS depends on the origin and dose of the LPS administered.


Assuntos
Penaeidae , Vibrio , Animais , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/farmacologia , Peso Corporal , Suplementos Nutricionais/análise , Escherichia coli , Imunidade Inata , Lipopolissacarídeos/farmacologia , Penaeidae/microbiologia , Vibrio/fisiologia
4.
Microbiome ; 10(1): 213, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36464721

RESUMO

BACKGROUND: Numerous microorganisms are found in aquaculture ponds, including several pathogenic bacteria. Infection of cultured animals by these pathogens results in diseases and metabolic dysregulation. However, changes in the metabolic profiles that occur at different infection stages in the same ponds and how these metabolic changes can be modulated by exogenous metabolites in Penaeus vannamei remain unknown. RESULTS: Here, we collected gastrointestinal tract (GIT) samples from healthy, diseased, and moribund P. vannamei in the same aquaculture pond for histological, metabolic, and transcriptome profiling. We found that diseased and moribund shrimp with empty GITs and atrophied hepatopancreas were mainly infected with Vibrio parahaemolyticus and Vibrio harveyi. Although significant dysregulation of crucial metabolites and their enzymes were observed in diseased and moribund shrimps, diseased shrimp expressed high levels of taurine and taurine metabolism-related enzymes, while moribund shrimp expressed high levels of hypoxanthine and related metabolism enzymes. Moreover, a strong negative correlation was observed between taurine levels and the relative abundance of V. parahaemolyticus and V. harveyi. Besides, exogenous taurine enhanced shrimp survival against V. parahaemolyticus challenge by increasing the expression of key taurine metabolism enzymes, mainly, cysteine dioxygenase (CDO) and cysteine sulfinic acid decarboxylase (CSD). CONCLUSIONS: Our study revealed that taurine metabolism could be modulated by exogenous supplementation to improve crustacean immune response against pathogenic microbes. Video Abstract.


Assuntos
Penaeidae , Vibrio , Animais , Alimentos Marinhos , Aquicultura , Antibacterianos/farmacologia
5.
Emerg Infect Dis ; 28(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36418019

RESUMO

Noncholera vibriosis is a rare, opportunistic bacterial infection caused by Vibrio spp. other than V. cholerae O1/O139 and diagnosed mainly during the hot summer months in patients after seaside activities. Detailed knowledge of circulating pathogenic strains and heterogeneities in infection outcomes and disease dynamics may help in patient management. We conducted a multicenter case-series study documenting Vibrio infections in 67 patients from 8 hospitals in the Bay of Biscay, France, over a 19-year period. Infections were mainly caused by V. alginolyticus (34%), V. parahaemolyticus (30%), non-O1/O139 V. cholerae (15%), and V. vulnificus (10%). Drug-susceptibility testing revealed intermediate and resistant strains to penicillins and first-generation cephalosporins. The acute infections (e.g., those involving digestive disorder, cellulitis, osteitis, pneumonia, and endocarditis) led to a life-threatening event (septic shock), amputation, or death in 36% of patients. Physicians may need to add vibriosis to their list of infections to assess in patients with associated risk factors.


Assuntos
Vibrioses , Vibrio cholerae , Vibrio , Humanos , Baías , Vibrioses/tratamento farmacológico , Vibrioses/epidemiologia , Penicilinas , Estudos Multicêntricos como Assunto
6.
Fish Shellfish Immunol ; 131: 137-149, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36206997

RESUMO

The study evaluated the effects of dietary phosphorus supplementation on the fishmeal replacement with Clostridium autoethanogenum protein (CAP) in the diet of L. vannamei. Four isonitrogenous and isolipid diets were formulated: the PC diet contains 25% fishmeal, the NC, P1 and P2 diets were replaced 40% fishmeal with CAP and supplemented with 0, 0.8 and 1.6% NaH2PO4 respectively (equivalent to dietary phosphorus level of 0.96%, 1.12% and 1.27%). Sampling and V. parahaemolyticus challenge test were conducted after 50-day-feeding (initial shrimp weight 1.79 ± 0.02 g). The results showed that there were no significant differences in the growth performance of shrimp among the 4 groups. The expressions of dorsal in the gut were significantly lower in shrimp fed the P1 and P2 diets than shrimp fed the NC diet and the expression of peroxinectin in the gut was lower in shrimp fed the NC diet than others. The cumulative mortality of shrimp after V. parahaemolyticus challenge was significantly lower in shrimp fed the P2 diet than those fed the NC diet. After the challenge, genes expressions related to the prophenoloxidase activating system (proPO, lgbp, ppaf) were inhibited in the hepatopancreas of shrimp fed NC diet but activated in shrimp fed the P1 diet compared to those fed the PC diet. The AKP and T-AOC activities were higher in shrimp fed the P2 diet than those fed the other diets. The thickness of muscle layer of shrimp fed the P1 diet was thicker than that in the other groups, and significant stress damage happened in the midgut of the shrimp fed the NC diet. The abundance of Pseudoalteromonas, Haloferula and Ruegeria in shrimp fed the P1 diet was higher than those fed the other diets, while Vibrio in shrimp fed the P2 diet was higher than those fed the other diets. This indicated that a low fishmeal diet with dietary phosphorus level of 1.12% could improve the histology, enhance immune response, and increase the abundance of beneficial bacteria in the gut of shrimp. The low fishmeal diet with dietary phosphorus level of 1.27% could improve disease resistance and antioxidant capacity, but there was a possibility of damage to the gut histology as well as increasing abundance of Vibrio in the gut microbiota of shrimp.


Assuntos
Penaeidae , Fósforo na Dieta , Vibrio , Animais , Fósforo na Dieta/farmacologia , Ração Animal/análise , Fósforo , Imunidade Inata , Dieta/veterinária , Suplementos Nutricionais
7.
Int J Biol Macromol ; 207: 850-858, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35364191

RESUMO

It is generally accepted that Astragalus polysaccharides (APS) supplementation can makes beneficial effects to fish. However, the adverse effects of APS to fish remains poorly understood. In the present study, Asian seabass Lates calcarifer were studied to assess the influence of different doses of APS on growth, health and resistance to Vibrio harveyi. Results showed that supplemental APS with 0.10 to 0.20% significantly boosted the growth performance, the protease and lipase activities of L. calcarifer. Compared with control diet, the villus length of L. calcarifer fed with APS supplemented diets was significantly higher. L. calcarifer fed with APS supplementation diets also significantly facilitated the antioxidant capacity and immune function. Meanwhile, supplemental APS with 0.10 to 0.15% significantly promoted liver health by up-regulating the expression of anti-inflammatory cytokines and down-regulating the expression of pro-inflammatory cytokines. Furthermore, survival rate of L. calcarifer challenged with V. harveyi was higher in diets supplemented with APS compared to the control. However, 0.20% APS significantly hindered the growth performance and caused immunostimulatory fatigue in L. calcarifer compared to 0.10% APS. Taken together, the present study demonstrates that supplementation APS with 0.10% is the optimal level for promoting the growth performance, health and resistance to V. harveyi of L. calcarifer, while 0.20% APS exerts adverse effects on L. calcarifer. Our findings provide novel recommendations for the application of APS supplementation in farmed fish.


Assuntos
Astrágalo , Doenças dos Peixes , Perciformes , Vibrio , Ração Animal/análise , Animais , Citocinas , Carboidratos da Dieta , Suplementos Nutricionais , Peixes , Polissacarídeos/farmacologia
9.
Fish Shellfish Immunol ; 124: 244-253, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35421573

RESUMO

Bacillus spp. supplementation as probiotics in cultured fish diets has a long history of safe and effective use. Specifically, B. velezensis show great promise in fine-tuning the European sea bass disease resistance against the pathogenicity caused by several members of the Vibrio family. However, the immunomodulatory mechanisms behind this response remain poorly understood. Here, to examine the inherent immune variations in sea bass, two equal groups were fed for 30 days with a steady diet, with one treatment supplemented with B. velezensis. The serum bactericidal capacity against live cells of Vibrio anguillarum strain 507 and the nitric oxide and lysozyme lytic activities were assayed. At the cellular level, the phagocytic response of peripheral blood leukocytes against inactivated Candida albicans was determined. Moreover, head-kidney (HK) total leukocytes were isolated from previously in vivo treated fish with LPS of V. anguillarum strain 507. Mechanistically, the expression of some essential proinflammatory genes (interleukin-1 (il1b), tumor necrosis factor-alpha (tnfa), and cyclooxygenase 2 (cox2) and the sea bass specific antimicrobial peptide (AMP) dicentracin (dic) expressions were assessed. Surprisingly, the probiotic supplementation significantly increased all humoral lytic and cellular activities assayed in the treated sea bass. In addition, time-dependent differences were observed between the control and probiotic treated groups for all the HK genes markers subjected to the sublethal LPS dose. Although the il1b was the fastest responding gene to a significant level at 48 h post-injection (hpi), all the other genes followed 72 h in the probiotic supplemented group. Finally, an in vivo bacteria challenge against live V. anguillarum was conducted. The probiotic fed fish observed a significantly higher survival. Overall, our results provide clear vertical evidence on the beneficial immune effects of B. velezensis and unveil some fundamental immune mechanisms behind its application as a probiotic agent in intensively cultured European sea bass.


Assuntos
Bacillus , Bass , Doenças dos Peixes , Vibrioses , Animais , Suplementos Nutricionais , Resistência à Doença , Lipopolissacarídeos , Vibrio , Vibrioses/veterinária
10.
Environ Pollut ; 298: 118850, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041899

RESUMO

Microplastic ingestion has been documented in various aquatic species. This causes physical damage, and additionally contaminated microplastics transfer attached pollutants and microbial pathogens to ingesting organisms. Continued metal accumulation can lead to toxicity and adverse health effects; attached microbial pathogens can cause dysbiosis - which lowers host immunity and promotes infections. Catfish, Clarias gariepinus, are a major food source in Southeast Asia, a hotspot of plastic pollution. This study aimed to quantify the transfer of the trace metals copper (Cu) and lead (Pb) -at environmentally relevant concentrations-from microplastics (polyamide 12, PA12, and polylactic acid, PLA) to catfish. Fish were reared for three months and exposed to seven different combinations of feed, supplemented with plastics and metals. At monthly intervals, fish gills, intestines, liver, and edible muscles were analysed for Cu and Pb concentrations using ICP-OES, and the intestines content assessed for Vibrio sp.. Our results showed that biodegradable PLA transferred higher amounts of metals to catfish than expected and also led to increased Vibrio counts in the intestines compared to PA12. Trace metal accumulation was significantly different in varying tissues, with highest concentrations observed in the gills, followed by liver, intestines, and lastly edible muscles. The results of this study further support the existing evidence that microplastics act as efficient shuttles to concentrate and transfer metals. They also indicate that their uptake can cause dysbiosis (increased numbers of Vibrio sp.). Most importantly, however, our study highlights that biodegradable polymers, such as PLA, could actually pose a greater environmental threat when ingested compared to the more common polymers such as PA12.


Assuntos
Peixes-Gato , Metais Pesados , Vibrio , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Metais Pesados/análise , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
11.
J Appl Microbiol ; 132(1): 298-310, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34192394

RESUMO

AIMS: The present study evaluated the antimicrobial activities of the medicinal plant Mallotus japonicus against the fish pathogenic bacteria, Aeromonas hydrophila, Aeromonas salmonicida, Edwardisella tarda and Vibrio anguillarum, and also describes the antimicrobial activities of the major and minor active compounds present within the plant extract. The synergistic effects by way of combination of these compounds were also evaluated and described. Chemical constituents of the plant extracts were analysed using the liquid chromatography-mass spectrometry (LC-MS) and described. METHODS AND RESULTS: The diethyl ether-extract of the plant elicited the strongest antibacterial activity against the challenged bacterial species, followed by ethanol- and methanol-extracts. The major active compound of the extracts, bergenin, demonstrated no antibacterial activity, but other compounds in the extracts did. CONCLUSION: Mallotus japonicus could be used as a prophylaxis to treat bacterial disease infections of fishes and its diethyl ether-extract has the potential of an alternative to antibiotic treatment in aquaculture. SIGNIFICANCE AND IMPACT OF THE STUDY: Mallotus japonicus diethyl ether-extract has the potential of an alternative to antibiotic treatment in aquaculture.


Assuntos
Doenças dos Peixes , Mallotus (Planta) , Vibrio , Aeromonas hydrophila , Animais , Antibacterianos/farmacologia , Edwardsiella tarda , Doenças dos Peixes/tratamento farmacológico
12.
J Proteomics ; 251: 104412, 2022 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-34737109

RESUMO

The gram-negative bacterium Vibrio (Listonella) anguillarum (VA) is the causative agent of vibriosis, a terminal hemorrhagic septicemia affecting the aquacultural industry across the globe. In the current study we used label-free quantitative proteomics to investigate how VA adapts to conditions that mimic defined aspects of vibriosis-related stress such as exposure to oxidative stress (H2O2), exposure to humoral factors of innate immunity through incubation with Atlantic salmon serum, and iron deprivation upon supplementation of 2,2'-dipyridyl (DIP) to the growth medium. We also investigated how regulation of virulence factors may be governed by the VA growth phase and availability of nutrients. All experimental conditions explored revealed stress-specific proteomic adaption of VA and only nine proteins were found to be commonly regulated in all conditions. A general observation made for all stress-related conditions was regulation of multiple metabolic pathways. Notably, iron deprivation and exposure to Atlantic salmon serum evoked upregulation of iron acquisition mechanisms. The findings made in the present study represent a source of potential virulence determinants that can be of use in the search for means to understand vibriosis. SIGNIFICANCE: Vibriosis in fish and shellfish caused by V. anguillarum (VA) is responsible for large economic losses in the aquaculture sector across the globe. However, not much is known about the defense mechanism of this pathogen to percept and adapt to the imposed stresses during infection. Analyzing the response of VA to multiple host-related physiochemical stresses, the quantitative proteomic analysis of the present study indicates modulation of several virulence determinants and key defense networks of this pathogen. Our findings provide a theoretical basis to enhance our understanding of VA pathogenesis and can be employed to improve current intervention strategies to control vibriosis in aquaculture.


Assuntos
Doenças dos Peixes , Vibrio , Animais , Doenças dos Peixes/microbiologia , Peróxido de Hidrogênio/metabolismo , Imunidade Inata , Ferro/metabolismo , Estresse Oxidativo , Proteômica , Vibrio/metabolismo
13.
Microb Biotechnol ; 15(6): 1671-1684, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34843164

RESUMO

The biotechnological production of succinate bears serious potential to fully replace existing petrochemical approaches in the future. In order to establish an economically viable bioprocess, obtaining high titre, yield and productivity is of central importance. In this study, we present a straightforward engineering approach for anaerobic succinate production with Vibrio natriegens, consisting of essential metabolic engineering and optimization of process conditions. The final producer strain V. natriegens Δlldh Δdldh Δpfl Δald Δdns::pycCg (Succ1) yielded 1.46 mol of succinate per mol of glucose under anaerobic conditions (85% of the theoretical maximum) and revealed a particularly high biomass-specific succinate production rate of 1.33 gSucc gCDW -1 h-1 compared with well-established production systems. By applying carbon and redox balancing, we determined the intracellular flux distribution and show that under the tested conditions the reductive TCA as well as the oxidative TCA/glyoxylate pathway contributed to succinate formation. In a zero-growth bioprocess using minimal medium devoid of complex additives and expensive supplements, we obtained a final titre of 60.4 gSucc l-1 with a maximum productivity of 20.8 gSucc l-1 h-1 and an overall volumetric productivity of 8.6 gSucc l-1 h-1 during the 7 h fermentation. The key performance indicators (titre, yield and productivity) of this first engineering approach in V. natriegens are encouraging and compete with costly tailored microbial production systems.


Assuntos
Engenharia Metabólica , Vibrio , Anaerobiose , Ácido Succínico/metabolismo , Vibrio/genética
14.
Fish Shellfish Immunol ; 120: 633-647, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34822997

RESUMO

The purpose of this study was to explore the optimal fermentation technology of Chinese herbal medicine formula-Siwu Decoction and the effects of fermented Siwu Decoction (FSW) on the growth performance, immune response, intestinal microflora and anti microbial ability of Litopenaeus vannamei. Response to surface methodology (RSM) was used to optimize the fermentation process of Siwu Decoction. The optimal fermentation conditions were obtained as follows: inoculation amount of mixed strains was 4.5%, fermentation time was 36 h, and the ratio of material to liquid was 20%. A total of 1260 shrimps were selected and divided into seven groups, three in parallel in each group. The dietary level of each group was as follows: Control (No additions), USW1 (0.2% unfermented herbal medicine), USW2 (0.5% unfermented herbal medicine), USW3 (0.8% unfermented herbal medicine), FSW1 (0.2% fermented herbal medicine), FSW2 (0.5% fermented herbal medicine), FSW3 (0.8% fermented herbal medicine). The immune response and antioxidant defense ability of hemocytes and intestine were measured at 21 and 42 days of feeding and the intestinal flora and growth performance were measured at 42 days of feeding, after that, a 7-day challenge test against Vibrio harveyi was conducted. The results showed that fermented Siwu Decoction significantly improved the growth performance and body composition of Litopenaeus vannamei; significantly increased the total number of hemocytes, phagocytic activity, antibacterial activity and bacteriolytic activity of Litopenaeus vannamei, and improved the antioxidant activity of Litopenaeus vannamei; the addition of fermented Siwu Decoction significantly increased the gene expression level of hemocytes and intestinal tract of Litopenaeus vannamei, and improved the antioxidant activity of Litopenaeus vannamei. The abundance of Bacillus increased, while the abundance of Vibrio decreased. After Vibrio harveyi challenge, the cumulative mortality of FSW group was significantly lower than that of control group. Fermented Siwu Decoction may be a potential physiological enhancer in aquaculture, and can be widely used in aquaculture.


Assuntos
Resistência à Doença , Medicamentos de Ervas Chinesas/farmacologia , Imunidade Inata , Penaeidae , Vibrio , Animais , Antioxidantes , Penaeidae/crescimento & desenvolvimento , Penaeidae/imunologia , Penaeidae/microbiologia , Vibrio/patogenicidade
15.
Res Vet Sci ; 140: 198-202, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34525439

RESUMO

Marine Streptomyces S073 was previously shown to have strong anti-Vibrio activity, and its antibacterial mechanism was proposed to be associated with siderophore-mediated iron competition and other antagonistic agents. In this study, anti-Vibrio compounds produced by S073 were isolated by bioassay-guided fractionation using column chromatography and HPLC, and the target compound in the most active fraction was identified as dibutyl phthalate (DBP) by various spectroscopic analyses, including EI-MS, 1H NMR and 13C NMR. The DBP-producing capacity of S073 was 2.39 mg/L in ISP1 culture media. Pure DBP was demonstrated to have strong inhibitory activity on Vibiro parahaemolyticus growth with an MIC of 31.25 mg/L. When standard DBP was supplemented into the S073 fermentation broth in a gradient method, an additive inhibitory effect on V. parahaemolyticus was observed, indicating the important role of DBP in driving anti-Vibrio activity in S073 metabolites pool. A synergistic additive effect between DBP and florfenicol was observed in the Vibrio inhibition. These results indicate that, to achieve Vibrio-inhibition, S073 exerted multifaceted strategies, which included DBP-mediated antagonism and siderophore-governed iron competition. The application potential of S073 as an aquaculture probiotic was evaluated, and the safety risks associated with the endocrine disruptor attributes of DBP were discussed.


Assuntos
Probióticos , Streptomyces , Vibrio , Animais , Aquicultura , Dibutilftalato
16.
Fish Shellfish Immunol ; 117: 192-210, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34400334

RESUMO

Disease epidemics in shrimp aquaculture increase apace with the development of aquaculture systems throughout the world. The disease caused by Vibrio spp. (vibriosis) is considered the most devastating, which has made it the most feared bacterial disease in the shrimp sector. In aquaculture, several strategies have already been applied to control Vibrio strains, including chemicals, probiotics, antibiotics, natural products from plants, including plant oils; hence, there has been considerable attention for using plants in shrimp aquaculture to provide sustainable, eco-friendly and safe compounds, such as alkaloids, saponins, terpenoids and flavonoids for replacing chemical compounds and antibiotics in current aquaculture. Medicinal plants may also have immunostimulating activity, increase growth and resistance in shrimps. The present paper aims to review the inhibition of Vibrio spp. in shrimp by medicinal plants, using both in vitro or/and in vivo techniques. Several medicinal plants appear capable of inhibiting growth of Vibrio pathogens outside living shrimp or in the body of shrimp, through enhancing growth and immune capacity when shrimps are fed or injected with them. In the current review Gracilaria spp. (Gracilariaceae family) and Sargassum spp. (family Sargassaceae) have been used most for in vitro and in vivo experiments. Among the terrestrial plants, Eucalyptus camaldulensis, Psidium guajava, Rhodomyrtus tomentosa, and Syzygium cumini (Myrtaceae family) had significant activity against Vibrio.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antibacterianos/farmacologia , Penaeidae/imunologia , Extratos Vegetais/farmacologia , Plantas Medicinais , Vibrio/efeitos dos fármacos , Animais , Aquicultura/métodos , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária
17.
Fish Shellfish Immunol ; 117: 188-191, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34371200

RESUMO

Pathogen infections in shrimps trigger the release of reactive oxygen species (ROS) as a part of immune response. The excessive accumulation of ROS causes the production of oxidative stress, which leads to oxidative damage of the biomolecules in the host cells. The inclusion of dietary antioxidants is known to mitigate oxidative stress and stimulate immunity. Curcumin, a potential antioxidant was encapsulated in chitosan nanoparticles to surge its bioavailability and was administered orally to Vibrio harveyi challenged and non-challenged Litopenaeus vannamei. The non-challenged shrimps fed with curcumin-loaded chitosan nanoparticles (Cur-CSNPs) showed a significant increase (p ≤ 0.05) in the specific growth rate, daily growth coefficient and survival rate. A significant increase (p ≤ 0.05) in the phenoloxidase activity, total hemocyte count and superoxide dismutase activity was observed in both the challenged and non-challenged shrimps fed with Cur-CSNPs. Additionally, a significant increase (p ≤ 0.05) in the relative mRNA expression of lysozyme, cMnSOD and lectin was observed in the Cur-CSNPs fed shrimps. The findings of this research suggest that Cur-CSNPs reinforce the immune system of L. vannamei against V. harveyi infection. Moreover, the non-challenged shrimps showed improvement in the growth parameters in addition to immunostimulation. Thereby a routine inclusion of dietary Cur-CSNPs could mitigate the oxidative damage caused by the incidence of environmental or pathogen-mediated oxidative stress.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Antioxidantes/administração & dosagem , Quitosana/administração & dosagem , Suplementos Nutricionais , Nanopartículas/administração & dosagem , Penaeidae/imunologia , Vibrioses/imunologia , Vibrio , Animais , Penaeidae/microbiologia , Vibrioses/veterinária
18.
Environ Res ; 200: 111493, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34129868

RESUMO

The present research work reports the biosynthesis of hydroxyapatite (HAp) from eggshells and green synthesis of HAp from eggshells with incorporation of Piper betel leaf extract (PBL-HAp) using microwave conversion method. Although there are several works on synthesis of HAp from eggshells and other calcium and phosphorus rich substrates, the incorporation of herbal extract with HAp to promote antimicrobial and antibiofilm activity is less explored and reported. This research work highlights a simple and cost-effective method for development of antimicrobial biomaterials by combining the concepts of waste management, biomaterial science, and herbal medicine. In the present study, characterization of synthesized HAp was applied by X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy, and morphological analysis using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The characterization results indicated that the prepared HAp and PBL-HAp were pure b-type carbonated HAp. The PBL-HAp was checked for its antibacterial activity using the well diffusion method and biofilm inhibitory activity by crystal violet assay against some common pathogens. The antibacterial activities against Staphylococcus aureus and biofilm inhibitory activities against Escherichia coli, Vibrio harveyi, Pseudomonas aeruginosa, and Staphylococcus aureus of Piper betel leaf extract coated HAp (PBL-HAp) were showed to be significant and offered a promising role for the development of potent dental biomaterials.


Assuntos
Durapatita , Piper , Animais , Antibacterianos/farmacologia , Biofilmes , Casca de Ovo , Extratos Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Vibrio , Difração de Raios X
19.
Arch Microbiol ; 203(7): 4243-4258, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34097104

RESUMO

Shrimp grow-out and hatchery systems are being affected by bacterial disease particularly Vibrios. The use of chemotherapeutic agents in aquaculture practices has to lead to the development of resistance among aquatic bacteria. Thus, health management becomes of major importance in aquaculture. Under this situation, progressing bio-inhibitors from marine resources are most appropriate to be considered against pathogenic bacteria. Molecular docking is an appropriate tool in structural biology and computer-assisted drug design to predict and neutralize a target protein of known diseases. In this study, marine macro-alga Ulva fasciata was aimed at developing inhibitors against luminescence disease-causing pathogenic bacteria Vibrio harveyi. U. fasciata was collected from Thoothukudi, Tamil Nadu, India. Extract of U. fasciata was tested against growth and virulence factors of V. harveyi during Penaeus monodon larviculture. Further U. fasciata extract was subjected to GC-MS analysis to identify the biomolecules. The homology modeling of virulent protein, hemolysin of V. harveyi was designed in this study. Hence, it was aimed for molecular docking against the biomolecules identified from U. fasciata extract. During shrimp larviculture, the extract of U. fasciata (200 µg mL-1) exhibited reduction on Cumulative Percentage of Mortality (32.40%) in postlarvae against challenge of V. harveyi infection. Biomolecule Methyl dehydroabietate had showed highest binding affinity among the compounds was evaluated in molecular docking study. Statistical analysis had revealed significant differences (p < 0.05) in trials. Therefore, it was proved that the bio-inhibitors from U. fasciata will be a better option for controlling luminescence disease-causing V. harveyi in shrimp grow-out practices.


Assuntos
Proteínas Hemolisinas , Simulação de Acoplamento Molecular , Extratos Vegetais , Ulva , Vibrio , Animais , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Índia , Penaeidae/microbiologia , Extratos Vegetais/farmacologia , Ulva/química , Vibrio/efeitos dos fármacos , Vibrio/fisiologia
20.
Biochim Biophys Acta Biomembr ; 1863(9): 183642, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34000261

RESUMO

This work investigates the potential probiotic effect of marennine - a natural pigment produced by the diatom Haslea ostrearia - on Vibrio splendidus. These marine bacteria are often considered a threat for aquaculture; therefore, chemical antibiotics can be required to reduce bacterial outbreaks. In vivo2H solid-state NMR was used to probe the effects of marennine on the bacterial membrane in the exponential and stationary phases. Comparisons were made with polymyxin B (PxB) - an antibiotic used in aquaculture and known to interact with Gram(-) bacteria membranes. We also investigated the effect of marennine using 31P solid-state NMR on model membranes. Our results show that marennine has little effect on phospholipid headgroups dynamics, but reduces the acyl chain fluidity. Our data suggest that the two antimicrobial agents perturb V. splendidus membranes through different mechanisms. While PxB would alter the bacterial outer and inner membranes, marennine would act through a membrane stiffening mechanism, without affecting the bilayer integrity. Our study proposes this microalgal pigment, which is harmless for humans, as a potential treatment against vibriosis.


Assuntos
Microalgas/química , Fenóis/química , Vibrio/química , Deutério , Espectroscopia de Ressonância Magnética , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA