Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 256(Pt 1): 128406, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007009

RESUMO

Utilising bacteria to produce silver nanoparticles was highly favoured due to its ability to minimise costs and mitigate any potential negative environmental impact. Exopolysaccharides (EPS) extracted from the human gut microbe have demonstrated remarkable efficacy in combating various bacterial infections. Exopolysaccharide (EPS), a naturally occurring biomolecule found in the human gut isolate Proteus mirabilis DMTMMR-11, was characterised using analytical techniques such as Fourier transform infrared spectroscopy (FTIR), 1H-nuclear magnetic resonance, 13C-nuclear magnetic resonance (NMR), and chemical composition analysis, which confirms the presence of carbohydrates (81.03 ± 0.23), proteins (4.22 ± 1.2), uronic acid (12.1 ± 0.12), and nucleic acid content (2.44 ± 0.15) in exopolysaccharide. The one factor at a time (OFAT) and response surface methodology (RSM) - central composite design (CCD) approaches were used to optimise the production of Bio-Pm-AgNPs, leading to an increase in yield of up to 1.86 g/l. The Bio-Pm-AgNPs were then subjected to Fourier transform infrared spectroscopy (FTIR) which determines the functional groups, X-ray diffractometer confers that Bio-Pm-AgNPs are crystalline in nature, field emission-scanning electron microscopy (FE-SEM) reveals the morphology of Bio-Pm-AgNPs, energy dispersive X-ray spectroscopy (EDX) confirms the presence of elements like Ag, C and O, high-resolution transmission electron microscopy (HR-TEM) determines that the Bio-Pm-AgNPs are sphere-shaped at 75 nm. Dynamic light scattering (DLS) and zeta potential analysis were also carried out to reveal the physiological nature of Bio-Pm-AgNPs. Bio-Pm-AgNPs have a promising effect on the inhibitory mechanism of Vibrio cholerae cells at a MIC concentration of 20 µg/ml which significantly affects cellular respiration and energy metabolism through glycolysis and TCA cycles by deteriorating the enzyme responsible for ATP and NADH utilisation. The action of Bio-Pm-AgNPs reduces the purity and concentration of nucleic acids, which leads to higher DNA damage. In-vivo analysis reveals that the treatment of Bio-Pm-AgNPs decreased the colonisation of V. cholerae and improved the survival rates in C. elegans.


Assuntos
Microbioma Gastrointestinal , Nanopartículas Metálicas , Vibrio cholerae , Animais , Humanos , Prata/farmacologia , Prata/química , Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Caenorhabditis elegans , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier
2.
J Biomol Struct Dyn ; 41(24): 14730-14743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36927394

RESUMO

Vibrio cholerae, the etiological agent of cholera, causes dehydration and severe diarrhea with the production of cholera toxin. Due to the acquired antibiotic resistance, V. cholerae has drawn attention to the establishment of novel medications to counteract the virulence and viability of the pathogen. Centella asiatica is a medicinal herb native to Bangladesh that has a wide range of medicinal and ethnobotanical applications including anti-bacterial properties. In the present investigation, a total of 25 bioactive phytochemicals of C. asiatica have been screened virtually through molecular docking, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) analyses, and molecular dynamics simulation. Our results revealed four lead compounds as Viridiflorol (-8.7 Kcal/mol), Luteolin (-8.1 Kcal/mol), Quercetin (-8.0 Kcal/mol) and, Geranyl acetate (-7.1 Kcal/mol) against V. cholerae Toxin co-regulated pilus virulence regulatory protein (ToxT). All the lead compounds have been found to possess favorable pharmacokinetic, pharmacodynamics, and molecular dynamics properties. Toxicity analysis revealed satisfactory results with no major side effects. Molecular dynamics simulation was performed for 100 ns that revealed noteworthy conformational stability and structural compactness for all the lead compounds, especially for Quercetin. Target class prediction unveiled enzymes in most of the cases and some experimental and investigational drugs were found as structurally similar analogs of the lead compounds. These findings could aid in the development of novel therapeutics targeting Cholera disease and we strongly recommend in vitro trials of our experimental findings.Communicated by Ramaswamy H. Sarma.


Assuntos
Centella , Cólera , Vibrio cholerae , Humanos , Cólera/tratamento farmacológico , Cólera/microbiologia , Simulação de Dinâmica Molecular , Centella/metabolismo , Quercetina/farmacologia , Simulação de Acoplamento Molecular , Proteínas de Bactérias/metabolismo , Toxina da Cólera/metabolismo , Toxina da Cólera/farmacologia
3.
Gene ; 863: 147289, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36804851

RESUMO

We previously reported that Vibrio cholerae in a viable but non-culturable (VBNC) state can be converted to a culturable state by treatment with catalase. This finding enabled us to develop an assay system to observe the time course of the conversion from VBNC to culturable in V. cholerae. VBNC cells began to convert to culturable cells as early as 2 h after catalase supplementation. Gene expression in VBNC cells during catalase treatment was analyzed using RNA microarray. Many ribosomal DNA genes were stimulated 6 h post catalase exposure, suggesting that the conversion-driving signal started prior to 6 h. Focusing on the period prior to cell proliferation, we found that 16 genes might be involved in the conversion mechanism in V. cholerae, and they showed enhanced expression at 2 h and 4 h after catalase addition. These upregulated genes included phage shock proteins (pspA, B, and C), alternative sigma factor (rpoE) and its negative regulator (rseA), cobW C terminal domain-containing protein, damage-inducible helicase (dinG), cholerae toxin secretion protein epsM, HTH-type transcription regulator (iscR), mechanosensitive ion channel family protein, anthranilate synthase component I, fructose-specific IIBC component, molybdenum import ATP-binding protein (modC), LysE family translocator, putative organic hydroperoxide resistance protein, and a hypothetical protein. This study identified genes involved in the catalase-induced conversion of V. cholerae VBNC cells to a culturable state and provided valuable insights into the mechanisms involved in the conversion process.


Assuntos
Vibrio cholerae , Vibrio cholerae/genética , Catalase/genética , Perfilação da Expressão Gênica
4.
Emerg Infect Dis ; 28(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36418019

RESUMO

Noncholera vibriosis is a rare, opportunistic bacterial infection caused by Vibrio spp. other than V. cholerae O1/O139 and diagnosed mainly during the hot summer months in patients after seaside activities. Detailed knowledge of circulating pathogenic strains and heterogeneities in infection outcomes and disease dynamics may help in patient management. We conducted a multicenter case-series study documenting Vibrio infections in 67 patients from 8 hospitals in the Bay of Biscay, France, over a 19-year period. Infections were mainly caused by V. alginolyticus (34%), V. parahaemolyticus (30%), non-O1/O139 V. cholerae (15%), and V. vulnificus (10%). Drug-susceptibility testing revealed intermediate and resistant strains to penicillins and first-generation cephalosporins. The acute infections (e.g., those involving digestive disorder, cellulitis, osteitis, pneumonia, and endocarditis) led to a life-threatening event (septic shock), amputation, or death in 36% of patients. Physicians may need to add vibriosis to their list of infections to assess in patients with associated risk factors.


Assuntos
Vibrioses , Vibrio cholerae , Vibrio , Humanos , Baías , Vibrioses/tratamento farmacológico , Vibrioses/epidemiologia , Penicilinas , Estudos Multicêntricos como Assunto
5.
Toxins (Basel) ; 14(10)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36287918

RESUMO

Careya arborea, Punica granatum, Psidium guajava, Holarrhena antidysenterica, Aegle marmelos, and Piper longum are commonly used traditional medicines against diarrhoeal diseases in India. This study investigated the inhibitory activity of these plants against cytotoxicity and enterotoxicity induced by toxins secreted by Vibrio cholerae. Cholera toxin (CT) and non-membrane damaging cytotoxin (NMDCY) in cell free culture filtrate (CFCF) of V. cholerae were quantified using GM1 ELISA and cell-based assays, respectively. Hydro-alcoholic extracts of these plants and lyophilized juice of P. granatum were tested against CT-induced elevation of cAMP levels in CHO cell line, binding of CT to ganglioside GM1 receptor and NMDCY-induced cytotoxicity. Significant reduction of cAMP levels in CFCF treated CHO cell line was observed for all extracts except P. longum. C. arborea, P. granatum, H. antidysenterica and A. marmelos showed >50% binding inhibition of CT to GM1 receptor. C. arborea, P. granatum, and P. guajava effectively decreased cytotoxicity and morphological alterations caused by NMDCY in CHO cell line. Further, the efficacy of these three plants against CFCF-induced enterotoxicity was seen in adult mice ligated-ileal loop model as evidenced by decrease in volume of fluid accumulation, cAMP levels in ligated-ileal tissues, and histopathological changes in intestinal mucosa. Therefore, these plants can be further validated for their clinical use against cholera.


Assuntos
Cólera , Plantas Medicinais , Toxinas Biológicas , Vibrio cholerae , Cricetinae , Camundongos , Animais , Cólera/tratamento farmacológico , Toxina da Cólera/toxicidade , Gangliosídeo G(M1)/farmacologia , Gangliosídeo G(M1)/metabolismo , Vibrio cholerae/metabolismo , Toxinas Biológicas/metabolismo , Citotoxinas/metabolismo , Células CHO
6.
J Appl Microbiol ; 133(5): 3030-3040, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35929370

RESUMO

AIMS: This study examined and characterized the extract for metabolites of Halobacillus marinus HMALI004 to understand their antibacterial activities against opportunistic marine pathogens, that is, Vibrio parahaemolyticus and Vibrio cholerae. METHODS AND RESULTS: The bacterial strain HMALI004 was characterized as H. marinus, and an antibacterial spectral test revealed its inhibition against two opportunistic marine pathogens (V. parahaemolyticus and V. cholera). Fermentation broth of strain HMALI004 was subjected to column chromatography and high-performance liquid chromatography to separate antibacterial substances. Two compounds were successfully isolated and identified as 1H-pyrrole-2-carboxylic acid and 4-chloro-1H-pyrrole-2-carboxylic acid by mass spectrometry (MS) and nuclear magnetic resonance. The minimal inhibition concentration (MIC) values of 1H-pyrrole-2-carboxylic acid and 4-chloro-1H-pyrrole-2-carboxylic acid for V. parahaemolyticus were 25 µg/ml, while their MIC values for V. cholerae were 50 and 100 µg/ml, respectively. The reactive oxygen species (ROS) production of two pathogen strains treated with 1H-pyrrole-2-carboxylic acid and 4-chloro-1H-pyrrole-2-carboxylic acid were detected to investigate the antimicrobial mechanism. The results suggested that 4-chloro-1H-pyrrole-2-carboxylic acid exerted enhanced ROS production in V. parahaemolyticus, whereas 1H-pyrrole-2-carboxylic acid had a weaker effect. Both compounds caused a significant rise in ROS production in V. cholerae, causing severe damage to the cell wall and cytoplasm, leading to cell death. CONCLUSIONS: The bacterium H. marinus HMALI004 was isolated from a shrimp pond and was found to produce antimicrobial compounds, which could inhibit the growth of opportunistic marine pathogens V. parahaemolyticus and V. cholerae by increasing ROS. SIGNIFICANCE AND IMPACT OF THE STUDY: Successfully isolated antibacterial-producing strain, H. marinus HMALI004, and its antimicrobial compounds could be used as biological control agents for marine pathogens.


Assuntos
Anti-Infecciosos , Halobacillus , Vibrio cholerae , Vibrio parahaemolyticus , Espécies Reativas de Oxigênio , Agentes de Controle Biológico/farmacologia , Bactérias , Vibrio parahaemolyticus/fisiologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Extratos Vegetais/farmacologia
7.
NPJ Biofilms Microbiomes ; 8(1): 65, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987769

RESUMO

In addition to catalyzing coupled transport and phosphorylation of carbohydrates, the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) regulates various physiological processes in most bacteria. Therefore, the transcription of genes encoding the PTS is precisely regulated by transcriptional regulators depending on substrate availability. As the distribution of the mannose-specific PTS (PTSMan) is limited to animal-associated bacteria, it has been suggested to play an important role in host-bacteria interactions. In Vibrio cholerae, mannose is known to inhibit biofilm formation. During host infection, the transcription level of the V. cholerae gene encoding the putative PTSMan (hereafter referred to as manP) significantly increases, and mutations in this gene increase host survival rate. Herein, we show that an AraC-type transcriptional regulator (hereafter referred to as ManR) acts as a transcriptional activator of the mannose operon and is responsible for V. cholerae growth and biofilm inhibition on a mannose or fructose-supplemented medium. ManR activates mannose operon transcription by facilitating RNA polymerase binding to the promoter in response to mannose 6-phosphate and, to a lesser extent, to fructose 1-phosphate. When manP or manR is impaired, the mannose-induced inhibition of biofilm formation was reversed and intestinal colonization was significantly reduced in a Drosophila melanogaster infection model. Our results show that ManR recognizes mannose and fructose in the environment and facilitates V. cholerae survival in the host.


Assuntos
Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato , Vibrio cholerae , Animais , Citarabina , Drosophila melanogaster/metabolismo , Frutose , Regulação Bacteriana da Expressão Gênica , Humanos , Manose/metabolismo , Fosfatos/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
8.
Int J Biol Macromol ; 208: 494-508, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35337913

RESUMO

The lipopolysaccharide (LPS) of Vibrio cholerae plays a significant role in stimulating primary protection and immune responses. LPS delivery has been limited by the stimulation of inflammatory cytokines. This work aimed to report the synthesis and performance of this formulation in modulating immune responses and protecting LPS against acidic gastric medium. Alg-Cs-LPS-SeNPs composite was fabricated by an ionic cross-linking/in situ reduction method. Cytokines TNF-α, IL-6, IL-10, and TGF-ß were assessed after cells were incubated with different compounds of the system. The main outcomes revealed that encapsulation of LPS-loaded SeNPs in the alginate-chitosan complex was associated with a high entrapment efficiency and could effectively protect LPS against acidic GIT medium. Kinetic profiling revealed that LPS was more slowly released from LPS-loaded Alg-Cs-LPS-SeNPs at pH 1.2, 7.4, and 6.8. These results indicated that Alg-Cs-LPS-SeNPs composite was able to significantly increase anti-inflammatory cytokines and reduce the release of pro-inflammatory cytokines. Thus, these findings show that this system for LPS delivery could be easily biosynthesized and encapsulated for use in the pharmaceutical industry. This study provides proof of the potential for future use of oral LPS vaccines, concomitantly inducing immunomodulatory effects.


Assuntos
Quitosana , Nanopartículas , Selênio , Vibrio cholerae , Alginatos/química , Quitosana/química , Citocinas , Lipopolissacarídeos/farmacologia , Nanopartículas/química , Selênio/farmacologia
9.
Microb Pathog ; 165: 105485, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35318072

RESUMO

Cholera is a serious epidemic disease caused by the toxigenic strains of Vibrio cholerae belonged to O1 or O139 serogroups. The emergence of antibacterial resistance in V. cholerae is an increasing concern. Natural product drug invention and Ethnopharmacology may demonstrate a considerable expectation under this circumstance. Traditionally, leaves of Typhonium trilobatum (L.) Schott (locally known as Ghatkanchu or Bengal Arum) are employed for treatment of gastrointestinal disorder in different region of India. The objective of the present study was to evaluate the antibacterial, and antibiofilm activities of methanol extract of T. trilobatum leaves (METTL) against the strains of multi-drug resistant (MDR) Vibrio cholerae (serotypes O1, O139, non-O1, and non-O139) which are responsible for watery diarrhea such as cholera. MIC, MBC and time-kill kinetic studies were used for evaluation of In vitro antibacterial activity of METTL. Microdilution method and Confocal laser scanning microscopy were used to evaluate biofilm-inhibitory activities. The gene expression was analyzed by performing Quantitative real-time PCR (qRT-PCR). METTL showed antibacterial activity with MIC and MBC at 1-32 mg/mL and 8-32 mg/mL, respectively against the clinical strains of Vibrio cholerae belonged to different serogroups. METTL showed significant (P < 0.05) inhibitory activity on the formation of biofilm by V. cholerae SG24, with 81.3, 75.8, and 69.6% of inhibition at MIC, ½ MIC and » MIC, respectively. METTL showed also significant (P < 0.05) inhibitory activity on the formation of extracellular polymeric substances (EPS) formation by V. cholerae SG24, with 89.41, and 99.26% of inhibition of EPS protein and EPS carbohydrate at MIC, respectively. METTL significantly (p < 0.01) inhibited the Cholera toxin (CT) production by the V. cholerae strain SG24 evaluated by the CT - ELISA assay. The cholera toxin production was reduced by 76.26%, 48.76% and 29.93 at MIC (8 mg/mL), ½ MIC (4 mg/mL) and » MIC (2 mg/mL), respectively. METTL was shown to repress ctxAB gene transcription 1.76 fold (p < 0.05) at sub-bactericidal concentration (» MIC). We also found that the expression of cholera toxin activator genes, toxT and tcpP was reduced by 11.56- fold (p < 0.001) and 23.52- fold (p < 0.001), respectively, at sub-bactericidal concentration (» MIC). Transcription of the following genes was repressed: vpsR (1.8-fold; p < 0.05), Bap1 (1.53-fold; p ≤ 0.05), and rmbA (2.89-fold) by METTL at sub-bactericidal concentration. The expression of vpsT was also repressed by 1.5-fold (p < 0.01) at sub-bactericidal concentration. The active Typhonium trilobatum (L.) leaves extract may be suggested as an substitute for the treatment of MDR V. cholerae infection and could be used as prospective source for the development of novel antimicrobial compound/s and biofilm-inhibitory drug/s useful for the treatment of cholera and diarrheal patients. The results obtained here also validate scientifically the traditional uses of Typhonium trilobatum (L.) in India employed for the treatment of gastrointestinal disorder. Further studies should be directed at purifying and characterizing these antibacterial principles against Vibrio cholerae.


Assuntos
Cólera , Vibrio cholerae , Antibacterianos/farmacologia , Cólera/microbiologia , Toxina da Cólera/genética , Humanos , Cinética , Extratos Vegetais/farmacologia , Estudos Prospectivos , Vibrio cholerae/metabolismo , Virulência/genética
10.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208951

RESUMO

A 24 kDa leucine-rich protein from ion exchange fractions of Solanum trilobatum, which has anti-bacterial activity against both the Gram-negative Vibrio cholerae and Gram-positive Staphylococcus aureus bacteria has been purified. In this study, mass spectrometry analysis identified the leucine richness and found a luminal binding protein (LBP). Circular dichroism suggests that the protein was predominantly composed of α- helical contents of its secondary structure. Scanning electron microscopy visualized the characteristics and morphological and structural changes in LBP-treated bacterium. Further in vitro studies confirmed that mannose-, trehalose- and raffinose-treated LBP completely inhibited the hemagglutination ability towards rat red blood cells. Altogether, these studies suggest that LBP could bind to sugar moieties which are abundantly distributed on bacterial surface which are essential for maintaining the structural integrity of bacteria. Considering that Solanum triolbatum is a well-known medicinal and edible plant, in order to shed light on its ancient usage in this work, an efficient anti-microbial protein was isolated, characterized and its in vitro functional study against human pathogenic bacteria was evaluated.


Assuntos
Antibacterianos , Folhas de Planta/química , Proteínas de Plantas , Solanum/química , Staphylococcus aureus/crescimento & desenvolvimento , Vibrio cholerae/crescimento & desenvolvimento , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia
11.
Microbiol Spectr ; 9(3): e0073921, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937180

RESUMO

Antimicrobial resistance (AMR) has become a serious public and economic threat. The rate of bacteria acquiring AMR surpasses the rate of new antibiotics discovery, projecting more deadly AMR infections in the future. The Pathogen Box is an open-source library of drug-like compounds that can be screened for antibiotic activity. We have screened molecules of the Pathogen Box against Vibrio cholerae, the cholera-causing pathogen, and successfully identified two compounds, MMV687807 and MMV675968, that inhibit growth. RNA-seq analyses of V. cholerae after incubation with each compound revealed that both compounds affect cellular functions on multiple levels including carbon metabolism, iron homeostasis, and biofilm formation. In addition, whole-genome sequencing analysis of spontaneous resistance mutants identified an efflux system that confers resistance to MMV687807. We also identified that the dihydrofolate reductase is the likely target of MMV675968 suggesting it acts as an analog of trimethoprim but with a MIC 14-fold lower than trimethoprim in molar concentration. In summary, these two compounds that effectively inhibit V. cholerae and other bacteria may lead to the development of new antibiotics for better treatment of the cholera disease. IMPORTANCE Cholera is a serious infectious disease in tropical regions causing millions of infections annually. Vibrio cholerae, the causative agent of cholera, has gained multi-antibiotic resistance over the years, posing greater threat to public health and current treatment strategies. Here we report two compounds that effectively target the growth of V. cholerae and have the potential to control cholera infection.


Assuntos
Antibacterianos/farmacologia , Cólera/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Antagonistas do Ácido Fólico/farmacologia , Vibrio cholerae/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Trimetoprima/análogos & derivados , Trimetoprima/farmacologia , Vibrio cholerae/genética , Vibrio cholerae/crescimento & desenvolvimento , Sequenciamento Completo do Genoma
12.
Molecules ; 26(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34770925

RESUMO

Vibrio cholerae causes the diarrheal disease cholera which affects millions of people globally. The outer membrane protein U (OmpU) is the outer membrane protein that is most prevalent in V. cholerae and has already been recognized as a critical component of pathogenicity involved in host cell contact and as being necessary for the survival of pathogenic V. cholerae in the host body. Computational approaches were used in this study to screen a total of 37,709 natural compounds from the traditional Chinese medicine (TCM) database against the active site of OmpU. Following a sequential screening of the TCM database, we report three lead compounds-ZINC06494587, ZINC85510056, and ZINC95910434-that bind strongly to OmpU, with binding affinity values of -8.92, -8.12, and -8.78 kcal/mol, which were higher than the control ligand (-7.0 kcal/mol). To optimize the interaction, several 100 ns molecular dynamics simulations were performed, and the resulting complexes were shown to be stable in their vicinity. Additionally, these compounds were predicted to have good drug-like properties based on physicochemical properties and ADMET assessments. This study suggests that further research be conducted on these compounds to determine their potential use as cholera disease treatment.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Vibrio cholerae/efeitos dos fármacos , Sítios de Ligação , Humanos , Ligação de Hidrogênio , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Ligação Proteica , Relação Estrutura-Atividade
13.
PLoS Negl Trop Dis ; 15(10): e0009726, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34679083

RESUMO

Diarrheal illness is a major cause of morbidity and mortality among children in Haiti, and the impact of diarrheal illness was compounded by a cholera outbreak between 2010 and 2019. Our understanding of risk factors for diarrhea among children during this outbreak is limited. We conducted a secondary analysis of data collected as part of a cholera vaccine effectiveness study to identify factors associated with medically attended diarrhea among children in central Haiti from October of 2012 through November of 2016. We identified 47 children aged one to five years old who presented to medical clinics with acute, watery diarrhea, and 166 matched controls who did not have diarrhea, and we performed conditional logistic regression to identify factors associated with diarrhea. Discontinuing exclusive breastfeeding within one month of birth was associated with increased risk of diarrhea (RR 6.9, 95% CI 1.46-32.64), and diarrhea was inversely associated with reported history of supplementation with vitamin A (RR 0.05, 95% CI 0.004-0.56) and zinc (reported among 0% of cases vs. 17% of controls). Because of the concordance in supplementation patterns, it was not possible to attribute the association to vitamin A or zinc independently. While having a respondent who correctly identified ≥3 means of avoiding cholera was associated with reduced risk of diarrhea (RR 0.43, 95% CI 0.19-1.01), reported household sanitation practices and knowledge of cholera were not consistently associated with risk of diarrhea. These findings support ongoing efforts to reduce barriers to breastfeeding and promote pediatric supplementation with vitamin A and zinc in Haiti. Given the reduced efficacy of current oral cholera vaccines (OCV) among children, the results reinforce the importance of breastfeeding and micronutrient supplementation in preventing all-cause pediatric diarrheal illness generally and during cholera outbreaks.


Assuntos
Vacinas contra Cólera/administração & dosagem , Cólera/prevenção & controle , Diarreia/prevenção & controle , Estudos de Casos e Controles , Pré-Escolar , Cólera/epidemiologia , Cólera/microbiologia , Diarreia/epidemiologia , Diarreia/microbiologia , Epidemias , Feminino , Haiti/epidemiologia , Humanos , Lactente , Masculino , População Rural/estatística & dados numéricos , Eficácia de Vacinas , Vibrio cholerae/genética , Vibrio cholerae/imunologia
14.
Comput Biol Med ; 138: 104929, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34655900

RESUMO

Cholera is a severe small intestine bacterial disease caused by consumption of water and food contaminated with Vibrio cholera. The disease causes watery diarrhea leading to severe dehydration and even death if left untreated. In the past few decades, V. cholerae has emerged as multidrug-resistant enteric pathogen due to its rapid ability to adapt in detrimental environmental conditions. This research study aimed to design inhibitors of a master virulence gene expression regulator, HapR. HapR is critical in regulating the expression of several set of V. cholera virulence genes, quorum-sensing circuits and biofilm formation. A blind docking strategy was employed to infer the natural binding tendency of diverse phytochemicals extracted from medicinal plants by exposing the whole HapR structure to the screening library. Scoring function criteria was applied to prioritize molecules with strong binding affinity (binding energy < -11 kcal/mol) and as such two compounds: Strychnogucine A and Galluflavanone were filtered. Both the compounds were found favourably binding to the conserved dimerization interface of HapR. One rare binding conformation of Strychnogucine A was noticed docked at the elongated cavity formed by α1, α4 and α6 (binding energy of -12.5 kcal/mol). The binding stability of both top leads at dimer interface and elongated cavity was further estimated using long run of molecular dynamics simulations, followed by MMGB/PBSA binding free energy calculations to define the dominance of different binding energies. In a nutshell, this study presents computational evidence on antibacterial potential of phytochemicals capable of directly targeting bacterial virulence and highlight their great capacity to be utilized in the future experimental studies to stop the evolution of antibiotic resistance evolution.


Assuntos
Vibrio cholerae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Compostos Fitoquímicos , Percepção de Quorum , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
15.
PLoS Pathog ; 17(7): e1009763, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34283874

RESUMO

Sensing and resisting oxidative stress is critical for Vibrio cholerae to survive in either the aquatic environment or the gastrointestinal tract. Previous studies mainly focused on the mechanisms of oxidative stress response regulation that rely on enzymatic antioxidant systems, while functions of non-enzymatic antioxidants are rarely discussed in V. cholerae. For the first time, we investigated the role of hydrogen sulfide (H2S), the simplest thiol compound, in protecting V. cholerae against oxidative stress. We found that degradation of L-cysteine by putative cystathionine ß-synthase (CBS) is the major source of endogenous H2S in V. cholerae. Our results indicate that intracellular H2S level has a positive correlation with cbs expression, while the enhanced H2S production can render V. cholerae cells less susceptible to H2O2 in vitro. Using proteome analysis and real-time qPCR assay, we found that cbs expression could stimulate the expression of several enzymatic antioxidants, including reactive oxygen species (ROS) detoxifying enzymes SodB, KatG and AhpC, the DNA protective protein DPS and the protein redox regulator Trx1. Assays of ROS detoxification capacities revealed that CBS-derived H2S could promote catalase activity at the post-translational level, especially for KatB, which serves as an important way that endogenous H2S participates in H2O2 detoxification. The enhancement of catalase activity by H2S is achieved through facilitating the uptake of iron. Adult mice experiments showed that cbs mutant has colonization defect, while either complementation of cbs or exogenous supplement of N-Acetyl-L-Cysteine restores its fitness in the host environment. Herein, we proposed that V. cholerae regulates CBS-dependent H2S production for better survival and proliferation under ROS stress.


Assuntos
Cistationina beta-Sintase/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Sulfeto de Hidrogênio/metabolismo , Cinesinas/metabolismo , Vibrio cholerae/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Catalase/metabolismo , Cólera/metabolismo , Camundongos , Estresse Oxidativo/fisiologia , Vibrio cholerae/patogenicidade
16.
Front Immunol ; 12: 698737, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249004

RESUMO

Efficacious vaccines are needed to control genital chlamydial diseases in humans and the veterinary industry. We previously reported a C. abortus (Cab) vaccine comprising recombinant Vibrio cholerae ghosts (rVCG) expressing the conserved and immunogenic N-terminal region of the Cab polymorphic membrane protein D (rVCG-Pmp18.1) protein that protected mice against intravaginal challenge. In this study, we investigated the immunomodulatory effect of the hematopoietic progenitor activator cytokine, Fms-like tyrosine kinase 3-ligand (FL) when co-administered with the rVCG-Pmp18.1 vaccine as a strategy to enhance the protective efficacy and the potential mechanism of immunomodulation. Groups of female C57BL/6J mice were immunized and boosted twice intranasally (IN) with rVCG-PmpD18.1 with and without FL or purified rPmp18.1 or rVCG-gD2 (antigen control) or PBS (medium) per mouse. The results revealed that co-administration of the vaccine with FL enhanced antigen-specific cellular and humoral immune responses and protected against live Cab genital infection. Comparative analysis of immune cell phenotypes infiltrating mucosal and systemic immune inductive tissue sites following immunization revealed that co-administration of rVCG-Pmp18.1 with FL significantly enhanced the number of macrophages, dendritic and NK cells, γδ and NK T cells in the spleen (systemic) and iliac lymph nodes (ILN) draining the genital tract (mucosal) tissues compared to rVCG-Pmp18.1 alone. Furthermore, FL enhanced monocyte infiltration in the ILN, while CD19+ B cells and CD4+ T cells were enhanced in the spleen. These results indicate that the immunomodulatory effect of FL is associated with its ability to mobilize innate immune cells and subsequent activation of robust antigen-specific immune effectors in mucosal and systemic lymphoid tissues.


Assuntos
Adjuvantes de Vacinas/farmacocinética , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/farmacologia , Infecções por Chlamydia , Proteínas de Membrana/imunologia , Animais , Chlamydia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Vibrio cholerae
17.
Front Immunol ; 12: 647873, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828557

RESUMO

Vaccines against enteric diseases could improve global health. Despite this, only a few oral vaccines are currently available for human use. One way to facilitate such vaccine development could be to identify a practical and relatively low cost biomarker assay to assess oral vaccine induced primary and memory IgA immune responses in humans. Such an IgA biomarker assay could complement antigen-specific immune response measurements, enabling more oral vaccine candidates to be tested, whilst also reducing the work and costs associated with early oral vaccine development. With this in mind, we take a holistic systems biology approach to compare the transcriptional signatures of peripheral blood mononuclear cells isolated from volunteers, who following two oral priming doses with the oral cholera vaccine Dukoral®, had either strong or no vaccine specific IgA responses. Using this bioinformatical method, we identify TNFRSF17, a gene encoding the B cell maturation antigen (BCMA), as a candidate biomarker of oral vaccine induced IgA immune responses. We then assess the ability of BCMA to reflect oral vaccine induced primary and memory IgA responses using an ELISA BCMA assay on a larger number of samples collected in clinical trials with Dukoral® and the oral enterotoxigenic Escherichia coli vaccine candidate ETVAX. We find significant correlations between levels of BCMA and vaccine antigen-specific IgA in antibodies in lymphocyte secretion (ALS) specimens, as well as with proportions of circulating plasmablasts detected by flow cytometry. Importantly, our results suggest that levels of BCMA detected early after primary mucosal vaccination may be a biomarker for induction of long-lived vaccine specific memory B cell responses, which are otherwise difficult to measure in clinical vaccine trials. In addition, we find that ALS-BCMA responses in individuals vaccinated with ETVAX plus the adjuvant double mutant heat-labile toxin (dmLT) are significantly higher than in subjects given ETVAX only. We therefore propose that as ALS-BCMA responses may reflect the total vaccine induced IgA responses to oral vaccination, this BCMA ELISA assay could also be used to estimate the total adjuvant effect on vaccine induced-antibody responses, independently of antigen specificity, further supporting the usefulness of the assay.


Assuntos
Antígeno de Maturação de Linfócitos B/genética , Vacinas contra Cólera/administração & dosagem , Cólera/prevenção & controle , Escherichia coli Enterotoxigênica/imunologia , Infecções por Escherichia coli/prevenção & controle , Vacinas contra Escherichia coli/administração & dosagem , Imunidade Humoral/genética , Imunoglobulina A/imunologia , Biologia de Sistemas/métodos , Vacinação/métodos , Vibrio cholerae/imunologia , Administração Oral , Adulto , Linfócitos B/imunologia , Biomarcadores , Células Cultivadas , Cólera/microbiologia , Vacinas contra Cólera/imunologia , Infecções por Escherichia coli/microbiologia , Vacinas contra Escherichia coli/imunologia , Voluntários Saudáveis , Humanos , Memória Imunológica , Transcriptoma
18.
J Ethnopharmacol ; 279: 113930, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33596471

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Centella asiatica (L.) Urb or Indian pennywort is a plant of ethnopharmacological relevance, commonly called as Brahmi in South India known for its antimicrobial property in gut and for the treatment of other gut ailments. Natural anti-virulence drugs that disarm pathogens by directly targeting virulence factors or the cell viability and are thus preferred over antibiotics as these drugs impose limited selection pressure for resistance development. In this regard, an in-vitro experimental study was conducted to know the effect of extract of Centella asiatica(L.) Urb. on cholera toxin, gene expression and its vibriocidal effect on five standard strains of Vibrio cholerae; IDH03097 (El Tor variant), N16961 (El Tor), O395 (Classical) as well as five clinical strains (Haitian variant). AIM OF THE STUDY: To study the effect of extract of Centella asiatica on Vibrio cholerae. MATERIALS AND METHODS: Crude extract was prepared from the leaves and stem part of the plant. The vibriocidal concentration was tested at different concentrations of the extract. The amount of cholera toxin released from the strains before and after exposure to the extract of Centella asiatica to Vibrio cholerae was measured using Bead ELISA. ctxA gene expression in the strains before and after exposure to extract of Centella asiatica was measured using quantitative real time PCR. All the above assays were performed with commercially obtained asiaticoside as well. RESULTS: The vibriocidal activity was tested at the different concentration of the extract, where 1g/mL of crude extract and 12.5mg/mL of asiaticoside was found to be vibriocidal. The amount of cholera toxin released before and after the exposure to extract of C. asiatica was measured using Bead ELISA, showing a reduction of 70%, 89% and 93% toxin produced by classical, El Tor and variant respectively. ctxA gene expression before and after exposure to extract of Centella asiatica as well as asiaticoside was measured using qRT-PCR. We found a decrease in expression of ctxA gene transcription by 6.19 fold in classical strain, 4.29 fold in El Tor, 1.133 fold in variant strains and about 10.13-10.20 fold for the clinical strains of V. cholerae using the extract of C.asiatica while, the reduction with the exposure to the asiaticoside were 2.762 fold in classical strain, 4.809 in El Tor, 24.1 in variant strain and 34.77 - 34.8 for the clinical strains. CONCLUSION: Centella asiatica extract inhibited the CT production in Vibrio cholerae as well as decreased the transcription of ctxA gene expression.


Assuntos
Toxina da Cólera/biossíntese , Genes Bacterianos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Vibrio cholerae/efeitos dos fármacos , Antibacterianos/administração & dosagem , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Centella , Relação Dose-Resposta a Droga , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Triterpenos/administração & dosagem , Triterpenos/isolamento & purificação , Vibrio cholerae/genética
19.
J Cell Sci ; 134(5)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33106317

RESUMO

Autophagy plays an essential role in the defense against many microbial pathogens as a regulator of both innate and adaptive immunity. Some pathogens have evolved sophisticated mechanisms that promote their ability to evade or subvert host autophagy. Here, we describe a novel mechanism of autophagy modulation mediated by the recently discovered Vibrio cholerae cytotoxin, motility-associated killing factor A (MakA). pH-dependent endocytosis of MakA by host cells resulted in the formation of a cholesterol-rich endolysosomal membrane aggregate in the perinuclear region. Aggregate formation induced the noncanonical autophagy pathway driving unconventional LC3 (herein referring to MAP1LC3B) lipidation on endolysosomal membranes. Subsequent sequestration of the ATG12-ATG5-ATG16L1 E3-like enzyme complex, required for LC3 lipidation at the membranous aggregate, resulted in an inhibition of both canonical autophagy and autophagy-related processes, including the unconventional secretion of interleukin-1ß (IL-1ß). These findings identify a novel mechanism of host autophagy modulation and immune modulation employed by V. cholerae during bacterial infection.


Assuntos
Proteínas Associadas aos Microtúbulos , Vibrio cholerae , Autofagia , Proteínas Relacionadas à Autofagia/genética , Citotoxinas , Vitamina B 12/análogos & derivados
20.
ACS Appl Mater Interfaces ; 12(41): 46588-46597, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33016695

RESUMO

In this work, we study the interaction of graphdiyne oxide (GDYO)-, graphene oxide (GO)-, or black phosphorous (BP)-wrapped Janus micromotors using a model system relying on a fluorescence-labeled affinity peptide, which is released upon specific interaction with a target Cholera Toxin B. Such ON-OFF-ON system allows mimicking similar processes occurring at (bio)-interfaces and to study the related sorption and desorption kinetics. The distinct surface properties of each nanomaterial play a critical role in the loading/release capacity of the peptide, greatly influencing the release profiles. Sorption obeys a second-order kinetic model using the two-dimensional (2D) nanomaterials in connection with micromotors, indicating a strong influence of chemisorption process for BP micromotors. Yet, release kinetics are faster for GDYO and GO nanomaterials, indicating a contribution of π and hydrophobic interactions in the probe sorption (Cholera Toxin B affinity peptide) and target probe release (in the presence of Cholera Toxin B). Micromotor movement also plays a critical role in such processes, allowing for efficient operation in low raw sample volumes, where the high protein content can diminish probe loading/release, affecting the overall performance. The loading/release capacity and feasibility of the (bio)-sensing protocol are illustrated in Vibrio cholerae and Vibrio parahaemolyticus bacteria cultures as realistic domains. The new concept described here holds considerable promise to understand the interaction of micromotor with biological counterparts in a myriad of biomedical and other practical applications, including the design of novel micromotor-based sensors.


Assuntos
Técnicas Biossensoriais , Toxina da Cólera/análise , Nanoestruturas/química , Fluorescência , Grafite/química , Tamanho da Partícula , Peptídeos/química , Fósforo/química , Propriedades de Superfície , Vibrio cholerae/química , Vibrio parahaemolyticus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA