Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Res Perspect ; 7(1): e00456, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30631446

RESUMO

Vigabatrin (VGB; (S)-(+)/(R)-(-) 4-aminohex-5-enoic acid), an antiepileptic irreversibly inactivating GABA transaminase (GABA-T), manifests use-limiting ocular toxicity. Hypothesizing that the active S enantiomer of VGB would preferentially accumulate in eye and visual cortex (VC) as one potential mechanism for ocular toxicity, we infused racemic VGB into mice via subcutaneous minipump at 35, 70, and 140 mg/kg/d (n = 6-8 animals/dose) for 12 days. VGB enantiomers, total GABA and ß-alanine (BALA), 4-guanidinobutyrate (4-GBA), and creatine were quantified by mass spectrometry in eye, brain, liver, prefrontal cortex (PFC), and VC. Plasma VGB concentrations increased linearly by dose (3 ± 0.76 (35 mg/kg/d); 15.1 ± 1.4 (70 mg/kg/d); 34.6 ± 3.2 µmol/L (140 mg/kg/d); mean ± SEM) with an S/R ratio of 0.74 ± 0.02 (n = 14). Steady state S/R ratios (35, 70 mg/kg/d doses) were highest in eye (5.5 ± 0.2; P < 0.0001), followed by VC (3.9 ± 0.4), PFC (3.6 ± 0.3), liver (2.9 ± 0.1), and brain (1.5 ± 0.1; n = 13-14 each). Total VGB content of eye exceeded that of brain, PFC and VC at all doses. High-dose VGB diminished endogenous metabolite production, especially in PFC and VC. GABA significantly increased in all tissues (all doses) except brain; BALA increases were confined to liver and VC; and 4-GBA was prominently increased in brain, PFC and VC (and eye at high dose). Linear correlations between enantiomers and GABA were observed in all tissues, but only in PFC/VC for BALA, 4-GBA, and creatine. Preferential accumulation of the VGB S isomer in eye and VC may provide new insight into VGB ocular toxicity.


Assuntos
Anticonvulsivantes/farmacocinética , Vigabatrina/farmacocinética , Transtornos da Visão/prevenção & controle , 4-Aminobutirato Transaminase/antagonistas & inibidores , Animais , Anticonvulsivantes/efeitos adversos , Anticonvulsivantes/química , Avaliação Pré-Clínica de Medicamentos , Olho/efeitos dos fármacos , Olho/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Estereoisomerismo , Distribuição Tecidual , Vigabatrina/efeitos adversos , Vigabatrina/química , Transtornos da Visão/induzido quimicamente , Córtex Visual/efeitos dos fármacos , Córtex Visual/metabolismo , Campos Visuais/efeitos dos fármacos
2.
Epilepsia ; 50(2): 174-83, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19016829

RESUMO

PURPOSE: To investigate the pharmacokinetic interrelationship of vigabatrin in blood and the brain (frontal cortex vs. hippocampus) and to ascertain the relationship between brain extracellular vigabatrin concentrations and concurrent gamma-aminobutyric acid (GABA) concentrations. METHODS: Sprague-Dawley rats were implanted with a jugular vein catheter for blood sampling, and microdialysis probes in the frontal cortex and hippocampus for extracellular fluid (ECF) sampling. Vigabatrin was administered intraperitoneally at two different doses (500 and 1,000 mg/kg), and blood and ECF were collected at timed intervals up to 8 h. Rats were freely moving and behaving. Vigabatrin (sera and ECF) and GABA (ECF) concentrations were measured with use of high performance liquid chromatography (HPLC). RESULTS: Vigabatrin concentrations in blood rose linearly and dose-dependently, and vigabatrin rapidly appeared in the brain as evidenced by the detection of vigabatrin in the ECF of both the frontal cortex and hippocampus at time of first sampling (15 min). However, frontal cortex concentrations were twofold greater than those of the hippocampus. Furthermore, GABA concentrations increased five-fold in the frontal cortex but were unaffected in the hippocampus. In addition, GABA concentrations began to increase approximately 3 h after vigabatrin administration at a time when vigabatrin concentrations were in exponential decline. CONCLUSIONS: Vigabatrin distribution in the brain is region specific, with frontal cortex concentrations substantially greater than those seen in the hippocampus. Elevation of GABA concentrations did not reflect the concentration profile of vigabatrin but reflected its regional distribution.


Assuntos
Anticonvulsivantes/farmacocinética , Líquido Extracelular/metabolismo , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Vigabatrina/farmacocinética , Ácido gama-Aminobutírico/metabolismo , Animais , Anticonvulsivantes/farmacologia , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Injeções Intraperitoneais , Masculino , Taxa de Depuração Metabólica/fisiologia , Microdiálise , Ratos , Ratos Sprague-Dawley , Vigabatrina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA