RESUMO
The evaluation of nano-priming effect with galactomannan stabilized Phyto-complexed calcium hydroxide (Ca(OH)2), selenium oxyanioncalcium hydroxide SeO-(Ca(OH)2), and seleniumcalcium hydroxide Se-(Ca(OH)2) nanocomposites was carried out in Vigna radiata (Green gram) seeds. The green source Cassia angustifolia seed rich in galactomannan and other phytoconstituents was detected experimentally and characterized with GC-MS, UV, FT-IR, NMR, XRD, and SEM studies. The highly active galactomannan and other biomolecules, enable their terminal oxygen and hydroxide groups to bind with calcium and selenium ions through bidentate and monodentate chelation, followed by bio-reduction. On the mild-thermal agitation, bio-stabilized (Ca(OH)2), SeO-(Ca(OH)2), and Se-(Ca(OH)2) nanocomposite coated with seed-derived biomolecules were precipitated under an alkaline condition. The size and morphological parameters of bio-fabricated nanocomposites were characterized to exhibit the spherical and hexagonal shape in nanoscale images of size 17.9 nm for (Ca(OH)2), 56.2 nm for SeO-(Ca(OH)2), and 69.3 nm Se-(Ca(OH)2). The sub-standard seed lot of Vigna radiata (Green gram) seeds (71%) was examined using synthesized nanocomposites at various concentrations, and the obtained physiological parameters in seedlings were compared with hydro-primed seeds. The nano-priming action of all the Phyto-complexed nanocomposites was predicted with a positive response, where the porous Se-(Ca(OH)2) possess high efficacy interaction on seed embryos and beneficially results at 90% germination.
Assuntos
Hidróxido de Cálcio/química , Galactose/análogos & derivados , Germinação , Mananas/química , Nanocompostos/química , Selênio/química , Vigna/crescimento & desenvolvimento , Galactose/química , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Nanocompostos/ultraestrutura , Compostos Fitoquímicos/química , Plântula , Sementes/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Selenium (Se) is an essential trace element for human beings and animals. Traditional plant Se enrichment technology suffers from selenium pollution. Herein, environmentally friendly Se-agarose (Se-Agar) hybrid hydrogels are prepared by simply mixing agar with different Se species including selenocarrageenan (SeCA), selenite and Se yeast under heating and stirring for 0.5 h without any other reagent. Such Se-Agar hybrid hydrogels with excellent biocompatibility were used as natural substrates for the cultivation of Se-enriched mung bean sprouts. Compared with Se yeast, SeCA and selenite show a better Se enrichment effect on mung bean sprouts. Furthermore, the growth indices including plant weight and plant height of mung bean sprouts were investigated with different concentrations and sources of Se. Notably, the Se-Agar hybrid hydrogels could be easily regenerated and reused for multiple cycles. The results indicated that Se-Agar hybrid hydrogels as recyclable natural substrates offer a simple, sustainable and affordable strategy for plant Se enrichment.
Assuntos
Hidrogéis/química , Desenvolvimento Vegetal , Selênio/química , Sefarose/química , Vigna/crescimento & desenvolvimento , Biomassa , Humanos , Estrutura MolecularRESUMO
Zinc (Zn) is an important micronutrient for crop plants and essential for human health. The Zn-deficiency is an important malnutrition problem known globally. Biofortified foods could overcome Zn deficiency in humans. Mungbean [Vigna radiata (L.) Wilczek] is an important, pulse crop frequently grown in arid and semi-arid regions of the world. Mungbean could provide essential micronutrients, including Zn to humans. Therefore, it is very important to investigate the impact of Zn fertilization on the yield and grain biofortification of mungbean. Twelve mungbean genotypes (i.e., NM-28, NM-2011, NM-13-1, NM-2006, NM-51, NM-54, NM-19-19, NM-92, NM-121-25, NM-20-21, 7006, 7008) were assessed for their genetic diversity followed by Zn-biofortification, growth and yield under control (0 kg ha-1) and Zn-fertilized (10 kg ha-1) conditions. Data relating to allometric traits, yield components, grain yield and grain Zn contents were recorded. Zinc fertilization improved entire allometric and yield-related traits. Grain yield of different genotypes ranged from 439 to 904 kg ha-1 under control and 536 to 1462 kg ha-1 under Zn-fertilization. Zinc concentration in the grains varied from 15.50 to 45.60 mg kg-1 under control and 18.53 to 64.23 mg kg-1 under Zn-fertilized conditions. The tested genotypes differed in their Zn-biofortification potential. The highest and the lowest grain Zn contents were noted for genotypes NM-28 and NM-121-25, respectively. Significant variation in yield and Zn-biofortification indicated the potential for improvement in mungbean yield and grain Zn-biofortification. The genotypes NM-28 and NM-2006 could be used in breeding programs for improvement in grain Zn concentration due to their high Zn uptake potential. Nonetheless, all available genotypes in the country should be screened for their Zn-biofortification potential.
Assuntos
Biofortificação/métodos , Alimentos Fortificados , Micronutrientes/análise , Melhoramento Vegetal/métodos , Vigna/genética , Zinco/química , Genótipo , Humanos , Valor Nutritivo , Vigna/classificação , Vigna/crescimento & desenvolvimento , Vigna/metabolismo , Zinco/metabolismoRESUMO
One of the most important global problems is protecting food from insect pests. The negative effects of synthetic insecticides on human health led to a resurgence of interest in botanical insecticides due to their minimal ecological side effects. Therefore, the insecticidal potential of hexane, acetone, and methanol extracts of Gnidia kraussiana Meisn roots at 1 and 5g/kg, and neem seed oil (NSO), used as standard insecticide, were evaluated. Ovicidal and larvicidal toxicity was tested by treating freshly laid eggs and larvae at different immature stages of Callosobruchus maculatus (F.). Cowpea (Vigna unguiculata) (L.) Walp seed damage and weight loss were assessed after a storage period of 4 mo. Repellency effects were detected in choice test using a linear olfactometer. All the fractions were toxic to C. maculatus; however, their bioactivities were inversely correlated with products polarity. Extracts proved to be more toxic than the commercial NSO. The acetone extract was more effective against immature stages of C. maculatus than the methanol extract; eggs, first-, and second-instar larvae being the more susceptible. No cowpea seed damage and weight loss were recorded from the seeds treated with hexane and acetone extracts at the dosage of 5 g/kg, after 4 mo of storage. Extracts evoked stronger repellency effects compared with the tested standard insecticide. According to the above, hexane and acetone extracts are good candidates for incorporation in integrated pest management programs for the control of C. maculatus in stored cowpea seeds.
Assuntos
Besouros , Controle de Insetos , Malvales/química , Compostos Fitoquímicos , Extratos Vegetais , Vigna , Animais , Feminino , Larva , Masculino , Óvulo , Extratos Vegetais/química , Pupa , Sementes/crescimento & desenvolvimento , Vigna/crescimento & desenvolvimentoRESUMO
Roots enable the plant to survive in the natural environment by providing anchorage and acquisition of water and nutrients. In this study, root architectural traits of 153 mungbean genotypes were compared under optimum and low phosphorus (P) conditions. Significant variations and medium to high heritability were observed for the root traits. Total root length was positively and significantly correlated with total root surface area, total root volume, total root tips and root forks under both optimum P (r = 0.95, r = 0.85, r = 0.68 and r = 0.82 respectively) and low P (r = 0.95, r = 0.82, r = 0.71 and r = 0.81 respectively). The magnitudes of the coefficient of variations were relatively higher for root forks, total root tips and total root volume. Total root length, total root surface area and total root volume were major contributors of variation and can be utilized for screening of P efficiency at the seedling stage. Released Indian mungbean varieties were found to be superior for root traits than other genotypic groups. Based on comprehensive P efficiency measurement, IPM-288, TM 96-25, TM 96-2, M 1477, PUSA 1342 were found to be the best highly efficient genotypes, whereas M 1131, PS-16, Pusa Vishal, M 831, IC 325828 were highly inefficient. Highly efficient genotypes identified would be valuable genetic resources for P efficiency for utilizing in the mungbean breeding programme.
Assuntos
Variação Genética , Fósforo/deficiência , Raízes de Plantas/genética , Plântula/crescimento & desenvolvimento , Vigna/genética , Vigna/metabolismo , Genótipo , Estresse Fisiológico/genética , Vigna/crescimento & desenvolvimento , Vigna/fisiologiaRESUMO
Nitrogen (N), phosphorus (P), and potassium (K) exert various effects on adzuki bean yields. Our research was conducted in a semi-arid area, and four test sites were established in environments that have chernozem or sandy loam soils. During a five-year period, the effects of N, P, and K fertilizers on yield were comprehensively investigated in field trials (2014-2016) and for model-implementation trials (2017-2018), with models established prior to the latter. In the field trials, 23 treatments comprising different N, P, and K combinations significantly affected both yield and yield components, and regression analysis indicated that the experimental results were suitable for model establishment. The model subsequently demonstrated that the yield and the yield components were more sensitive to N and K fertilizer than to P fertilizer. Moreover, the yield and yield components increased. These yield increases were intense in response to the 0.5 to 1.34 levels in terms of the single effects; interaction effects; and the effects of combinations of N, P, and K fertilizers. Moreover, the effects of combinations of N, P, and K fertilizers were more significant on yield than were the single or interaction effects of N, P, and K fertilizers. The optimal fertilizer combination that resulted in high yields (≥1941.53 kg ha-1) comprised 57.23-68.43 kg ha-1 N, 36.04-47.32 kg ha-1 P2O5 and 50.29-61.27 kg ha-1 K2O. The fertilizer combination that resulted in the maximum yield was 62.98 kg ha-1 N, 47.04 kg ha-1 P2O5 and 59.95 kg ha-1 K2O (N:P2O5:K2O = 1:0.75:0.95), which produced the model-expected yield in trials at multiple sites. An economical fertilizer combination was determined on the basis of the best fertilizer measures in consideration of the cost of fertilizer and seed; this combination achieved yields of 2236.17 kg ha-1, the profit was 15,653.16 Yuan ha-1, and the corresponding rates were 57.60 kg ha-1 N, 47.03 kg ha-1 P2O5, and 31.64 kg ha-1 K2O (N:P2O5:K2O = 1:0.82:0.55).
Assuntos
Clima Desértico , Fertilizantes , Nitrogênio/farmacologia , Fósforo/farmacologia , Potássio/farmacologia , Vigna/crescimento & desenvolvimento , China , Fertilizantes/economia , Modelos Teóricos , Análise de Regressão , Vigna/efeitos dos fármacosRESUMO
Bambara groundnut (Vigna subterranea L. Verdc.) is an indigenous, drought-tolerant, underutilized African food legume, with the ability to fix atmospheric N2 in symbiosis with soil bacteria called rhizobia. The aim of this study was to assess the morpho-physiological, symbiotic and phylogenetic characteristics of rhizobia nodulating Bambara groundnut in Ghana, Mali and South Africa. The morpho-physiologically diverse isolates tested were also found to exhibit differences in functional efficiency and phylogenetic positions. Based on Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR banding patterns, the isolates were grouped into eight major clusters. The concentrations of Ca, Na and K in soils had a significant (p ≤ 0.01) effect on the distribution of rhizobia. Though many isolates were symbiotically very effective, the effectiveness index varied markedly (p ≤ 0.05) among them. Moreover, the isolates also exhibited tolerance to a wide range of NaCl (0.5-7%), streptomycin (50-500 µg.ml-1), and kanamycin (25-150 µg.ml-1) concentrations. Additionally, these isolates could produce 0.02 to 69.71 µg.ml-1 of indole-3-acetic acid (IAA) in tryptophan-supplemented medium, as well as solubilize tri-calcium phosphate. Phylogenetic analysis of these rhizobial isolates using 16S rRNA, atpD, glnII, gyrB, recA and symbiotic (nifH and nodC) gene sequences revealed distinct and novel evolutionary lineages related to the genus Bradyrhizobium, with some of them being very close to Bradyrhizobium vignae, B. kavangense, B. subterraneum, B. elkanii and B. pachyrhizi.
Assuntos
Adaptação Fisiológica , Filogenia , Rhizobium/fisiologia , Simbiose , Vigna/microbiologia , Resistência Microbiana a Medicamentos , Genes Bacterianos , Genes Essenciais , Geografia , Fenótipo , Fosfatos/metabolismo , Fotossíntese , Nodulação , RNA Ribossômico 16S/genética , Análise de Regressão , Rhizobium/genética , Rhizobium/isolamento & purificação , Nódulos Radiculares de Plantas/microbiologia , Salinidade , Solo/química , Solubilidade , África do Sul , Vigna/anatomia & histologia , Vigna/crescimento & desenvolvimentoRESUMO
BACKGROUND: Cowpea (Vigna unguiculata L. Walph) is predominantly consumed in the North and Northeast regions of Brazil, and its biofortification with iron seeks to reduce the high prevalence of iron deficiency anemia in these regions. It is commonly eaten cooked; however, in the germinated form, it can improve nutritional quality by reducing the antinutritional factors and consequently improving the bioavailability of elements. The present study aimed to determine the physico-chemical characteristics, bioaccessibility and bioavailability of iron in biofortified germinated cowpea. RESULTS: There was no statistical difference between the germinated and cooked beans with regard to centesimal composition. Germinated beans had phytates and tannins similar to cooked beans. The phytate-iron molar ratio for all groups did not present a statistical difference (cooking 3.58 and 3.41; germinated 3.94 and 3.51), nor did the parameters evaluating in vivo iron bioavailability. Total phenolics was higher in the germinated group (cooking 0.56 and 0.64; Germinated 2.05 and 2.45 mg gallic acid kg-1 ). In vitro bioaccessibility of iron of germinated beans presented higher values (P ≤ 0.05) compared to cooked beans. There was higher expression of divalent metal transporter-1 in biofortified and germinated beans. CONCLUSION: The iron bioavailability from the biofortified and germinated beans was comparable to ferrous sulfate. Germination can be considered as an alternative and efficient method for consuming cowpea, presenting good iron bioaccessibility and bioavailability. © 2019 Society of Chemical Industry.
Assuntos
Ferro/metabolismo , Sementes/crescimento & desenvolvimento , Vigna/metabolismo , Animais , Disponibilidade Biológica , Culinária , Alimentos Fortificados/análise , Germinação , Ferro/análise , Masculino , Valor Nutritivo , Ácido Fítico/análise , Ácido Fítico/metabolismo , Ratos , Ratos Wistar , Sementes/química , Sementes/metabolismo , Vigna/química , Vigna/crescimento & desenvolvimentoRESUMO
Nine bacterial strains were previously isolated in association with pinewood nematode (PWN) from wilted pine trees. They proved to be nematicidal in vitro, and one of the highest activities, with potential to control PWN, was showed by Serratia sp. M24T3. Its ecology in association with plants remains unclear. This study aimed to evaluate the ability of strain M24T3 to colonize the internal tissues of the model plant Arabidopsis thaliana using confocal microscopy. Plant growth-promoting bacteria (PGPB) functional traits were tested and retrieved in the genome of strain M24T3. In greenhouse conditions, the bacterial effects of all nematicidal strains were also evaluated, co-inoculated or not with Bradyrhizobium sp. 3267, on Vigna unguiculata fitness. Inoculation of strain M24T3 increased the number of A. thaliana lateral roots and the confocal analysis confirmed effective bacterial colonization in the plant. Strain M24T3 showed cellulolytic activity, siderophores production, phosphate and zinc solubilization ability, and indole acetic acid production independent of supplementation with L-tryptophan. In the genome of strain M24T3, genes involved in the interaction with the plants such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, chitinolytic activity, and quorum sensing were also detected. The genomic organization showed ACC deaminase and its leucine-responsive transcriptional regulator, and the activity of ACC deaminase was 594.6 nmol α-ketobutyrate µg protein-1 µl-1. Strain M24T3 in co-inoculation with Bradyrhizobium sp. 3267 promoted the growth of V. unguiculata. In conclusion, this study demonstrated the ability of strain M24T3 to colonize other plants besides pine trees as an endophyte and displays PGPB traits that probably increased plant tolerance to stresses.
Assuntos
Arabidopsis/microbiologia , Nematoides/microbiologia , Serratia/fisiologia , Animais , Antibiose , Arabidopsis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono-Carbono Liases/genética , Carbono-Carbono Liases/metabolismo , Pinus/parasitologia , Doenças das Plantas/parasitologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Percepção de Quorum , Serratia/enzimologia , Serratia/genética , Serratia/isolamento & purificação , Vigna/crescimento & desenvolvimento , Vigna/microbiologiaRESUMO
Rising global temperatures are proving to be detrimental for the agriculture. Hence, strategies are needed to induce thermotolerance in food crops to sustain the food production. GABA (γ-aminobutyric acid), a non-protein amino acid, can partially protect plants from high-temperature stress. This study hypothesises that declining GABA concentrations in the cells of heat-stressed mungbean plants increases the heat-sensitivity of reproductive function. Mungbean plants were grown in a natural, outdoor environment (29.3/16.1 ± 1 °C as mean day/night temperature, 1350-1550 µmol m-2 s-1 light intensity, 60-65% as mean relative humidity) until the start of the reproductive stage. Subsequently, two temperature treatments were imposed in a controlled environment-control (35/23 °C) and heat stress (45/28 °C)-at about 800 µmol m-2 s-1 light intensity and 65-70% as mean relative humidity, until pod maturity. In heat-stressed (HS) plants, endogenous GABA concentrations in leaf and anther samples had declined by 49 and 60%, respectively, and to a much lesser degree in the plants, exogenously supplemented with 1 mM GABA. The reproductive function of GABA-treated heat-stressed plants improved significantly in terms of pollen germination, pollen viability, stigma receptivity and ovule viability, compared to untreated HS controls. In addition, GABA-treated heat-stressed plants had less damage to membranes, photosynthetic machinery (chlorophyll concentration, chlorophyll fluorescence, RuBisCO activity were functionally normal) and carbon assimilation (sucrose synthesis and its utilisation) than the untreated HS controls. Leaf water status improved significantly with GABA application, including enhanced accumulation of osmolytes such as proline and trehalose due to increase in the activities of their biosynthetic enzymes. GABA-treated heat-stressed plants produced more pods (28%) and seed weight (27%) plant-1 than the untreated controls. This study is the first to report the involvement of GABA in protecting reproductive function in mungbean under heat stress, as a result of improved leaf turgor, carbon fixation and assimilation processes, through the augmentation of several enzymes related to these physiological processes.
Assuntos
Resposta ao Choque Térmico , Vigna/fisiologia , Ácido gama-Aminobutírico/metabolismo , Germinação , Fotossíntese , Polinização , Termotolerância , Vigna/crescimento & desenvolvimentoRESUMO
Phosphorus (P) demand is likely to increase especially in legumes to harness greater benefits of nitrogen fixation under elevated CO2 condition. In the following study, seed yield and seed P uptake in cowpea increased by 26.8% and 20.9%, respectively, under elevated CO2 level. With an increase in phosphorus dose up to 12 mg kg-1, seed yield enhanced from 2.6 to 5.4 g plant-1. P application and cyanobacterial inoculation increased the microbial activity of soil, leading to increased availability of P. Under elevated CO2 condition, microbial activity, measured as dehydrogenase, acid phosphatase, and alkaline phosphatase activities showed stimulation. Soil available P also increased under elevated CO2 condition and was stimulated by both P application and cyanobacterial inoculation. Higher P uptake in elevated CO2 condition led to lower values of inorganic P in soil. Stepwise regression analysis showed that aboveground P uptake, soil available P, and alkaline phosphatase activity of soil influenced the yield while available P, and organic and inorganic P influenced the aboveground P uptake of the crop. This study revealed that under elevated CO2 condition, P application and cyanobacterial inoculation facilitated P uptake and yield, mediated through enhanced availability of nutrients, in cowpea crop.
Assuntos
Dióxido de Carbono/metabolismo , Cianobactérias/metabolismo , Fósforo/metabolismo , Vigna/metabolismo , Carbono , Dióxido de Carbono/análise , Monitoramento Ambiental , Nitrogênio , Fixação de Nitrogênio , Análise de Regressão , Solo/química , Vigna/crescimento & desenvolvimentoRESUMO
The leather industry is a major source of environmental pollution in India. The wastewater generated by leather industries contains very high pollution parameters due to the presence of a complex mixture of organic and inorganic pollutants even after the treatment at a Common Effluent Treatment Plant (CETP) and disturbs the ecological flora and fauna. The nature, characteristics and toxicity of CETP treated wastewater is yet to be fully elucidated. Thus, this study aims to characterize and evaluate the toxicity of CETP treated tannery wastewater collected from the Unnao district of Uttar Pradesh, India. In addition to measuring the physico-chemical parameters, the residual organic pollutants was identified by GC-MS analysis and phytotoxicity, cytotoxicity and genotoxicity of the treated wastewater was evaluated using Vigna radiata L. and Allium cepa L. Results showed that the treated wastewater contained very high pollution parameters (TDS 3850â¯mg/L, BOD 680â¯mg/L, COD-1300â¯mg/L). GC-MS analysis revealed the presence of various types of residual organic pollutants including benzoic acid, 3-[4,-(T-butyl) Phenyl] furan-2-5-dione, benzeneacetamide, resorcinol, dibutyl phthalate, and benzene-1,2,4-triol. Further, toxicological studies showed the phytotoxic nature of the wastewater as it inhibited seed germination in V. radiata L. and root growth of A. cepa. Genotoxicity was evidenced in the root tip cell of A. cepa where chromosomal aberrations (stickiness, chromosome loss, C-mitosis, and vagrant chromosome) and nuclear abnormalities like micronucleated and binucleated cells were observed. Thus, results suggested that it is not safe to discharge these wastewater into the environment.
Assuntos
Aberrações Cromossômicas/induzido quimicamente , Cebolas/efeitos dos fármacos , Curtume , Vigna/efeitos dos fármacos , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade , Cromossomos de Plantas/efeitos dos fármacos , Cromossomos de Plantas/genética , Germinação/efeitos dos fármacos , Índia , Meristema/efeitos dos fármacos , Meristema/genética , Cebolas/genética , Cebolas/crescimento & desenvolvimento , Vigna/genética , Vigna/crescimento & desenvolvimento , Águas Residuárias/química , Poluentes Químicos da Água/análiseRESUMO
Mung bean (Vigna radiata L.) is an important edible bean in the human diet worldwide. However, its growth, development, and yield may be restricted or limited by insufficient or unbalanced nitrogen (N), phosphorus (P), and potassium (K) fertilization. Despite this, there are few long-term studies of the effects of varying levels of N, P, and K combined fertilizers and the optimal fertilization for improving mung bean yield and quality. This study was conducted to optimize the fertilization strategies for high yield and to improve yield components (pods per plant, seeds per pod, and 100-seed weight) in the Bailv9 mung bean cultivar, 23 treatments were tested in 2013-2015, using a three-factor (N, P, and K fertilizers), five-level quadratic orthogonal rotation combination design. Our studies showed that, the N, P, and K fertilizers significantly influenced the pods per plant and yield, which increased and then decreased with the increasing N, P, and K fertilizers. The 100-seed weight was significantly affected by the N and P fertilization, and it was increased consistently with the increasing N fertilizer, and decreased significantly with the increasing P fertilizer. Whereas, the seeds per pod significantly decreased with the increasing N and K fertilizers, and the P fertilizer had no significant effect on it. The NP interaction had a significant effect on yield and pods per plant at high N levels, while the NK interaction had a significant but opposite effect on yield at low N levels. The optimal fertilization conditions to obtain yield >2,141.69 kg ha-1 were 34.38-42.62 kg ha-1 N, 17.55-21.70 kg ha-1 P2O5, and 53.23-67.29 kg ha-1 K2O. Moreover, the optimal N, P, and K fertilization interval to achieve pods per plant > 23.41 and the optimal N fertilization to achieve a 100-seed weight > 6.58 g intersected with the interval for yield, but the seeds per pod did not. The fertilizer ratio for the maximum yield was N:P2O5:K2O = 1:0.5:1.59. Following three years experimentation, the optimal fertilization measures were validated in 2016-2017, the results indicated that yield increased by 19.6% than that obtained using conventional fertilization. The results of this study provide a theoretical basis and technical guidance for high-yield mung bean cultivation using the optimal fertilization measures.
Assuntos
Fertilizantes , Nitrogênio/metabolismo , Fósforo/metabolismo , Potássio/metabolismo , Vigna/crescimento & desenvolvimento , Agricultura/métodos , Produtos Agrícolas/crescimento & desenvolvimentoRESUMO
Competing demand for high-quality fresh water for agricultural, industrial, and municipal uses has placed tremendous stress on water resources; irrigating crops with fresh water is expensive and unsustainable. Using unconventional water sources such as oilfield produced water (PW) and treating PW with physical treatment methods such as electromagnetic treatment may overcome water-limitation challenges. A germination experiment was conducted using treated and untreated PW to examine the effect on the germination of iron and clay cowpeas (ICCs) since germination is the stage at which plants are most sensitive to external factors and stresses. The results from the study showed that ICCs germinated when irrigated with higher salinity water that was treated using the electromagnetic technology. A plant growth study was also conducted to assess the effect of electromagnetic treatment of high-salinity PW on the growing ability and crop health of ICCs. A reduction in leaf area expansion rate, the first indicator of salt stress on plants, was observed. After 14 days, plants showed early signs of salt stress such as wilting, lightening in color, and reduction in leaf area. After 28 days, plants watered with higher salinity PW (21,475-42,950 mg/L total dissolved solids) died and plants watered with lower salinity PW (< 21,475 mg/L total dissolved solids) survived but grew smaller than plants irrigated using fresh water. Results from both experiments suggested a potential total dissolved solids limit of ICCs or electromagnetic technology (or both) between 4000 and 10,000 mg/L. The results further suggested that while the electromagnetic technology did not have a strong effect on plant growth, high-salinity water might be treated for reuse in agriculture.
Assuntos
Irrigação Agrícola/métodos , Campos de Petróleo e Gás , Vigna/crescimento & desenvolvimento , Purificação da Água/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Radiação Eletromagnética , Germinação , Folhas de Planta/crescimento & desenvolvimento , Salinidade , Qualidade da ÁguaRESUMO
Wide use of Al2O3 nanoparticles (NPs) leading to their possible escape into environment and their interaction with living organisms demands immediate attention. We evaluated impact of nanoparticulate (Al2O3-NPs) and ionic (Al3+) forms of aluminium on early seedling growth of Vigna radiata. While Al3+ inhibited growth of seedlings, Al2O3-NPs did not affect it negatively. Unlike enhancement in proline, malondialdehyde and H2O2 levels in roots and shoots induced by Al3+, these stress markers remained unaltered by Al2O3-NPs. No signs of membrane damage were recorded in roots of seedlings raised in presence of Al2O3-NPs; this was witnessed from insignificant electrolyte leakage and Evans blue uptake. Activities of antioxidant enzymes, i.e., superoxide dismustase, catalase, guaiacol peroxidase in root and shoot were enhanced by Al3+. However, they were unaffected by Al2O3-NPs. Al3+ enhanced levels of non-protein thiols, phenolics and ascorbate, with no alterations induced by Al2O3-NPs. These findings revealed that, Al2O3-NPs did not induce oxidative stress in seedlings. Seedlings raised in Al3+ showed higher uptake of Al than those grown in Al2O3-NPs; Al content was higher in roots. Al was not detected in shoots of seedlings grown in Al2O3-NPs. Lower translocation of Al in seedlings raised in Al2O3-NPs was due to adsorption/restriction of Al2O3-NPs on root surface. Al3+ caused ruptures on root epidermis of seedlings and inhibited root-hair formation, whereas no structural damage was caused by Al2O3-NPs. Our findings revealed that while ionic Al is highly toxic, nanoparticulate form of Al is non-toxic to growth of V. radiata.
Assuntos
Óxido de Alumínio/toxicidade , Alumínio/toxicidade , Poluentes Ambientais , Nanopartículas/toxicidade , Plântula/crescimento & desenvolvimento , Vigna/efeitos dos fármacos , Alumínio/metabolismo , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Fenóis/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Prolina/metabolismo , Plântula/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo , Superóxido Dismutase/metabolismo , Vigna/crescimento & desenvolvimento , Vigna/metabolismoRESUMO
Plants in Brassica genus have been found to possess strong allelopathic potential. They may inhibit seed germination and emergence of subsequent crops following them in a rotation system. Series of laboratory and greenhouse experiments were conducted to determine the allelopathic impacts of Brassica napus L. against mung bean. We studied (1) the effects of aqueous extract (5%) of different plant parts (root, stem, leaf, flower, and whole plant) of B. napus, (2) the effects of leaf and flower extracts of B. napus at 0, 1, 2, 3, and 4% concentrations, and (3) the effect of residues of different B. napus plant parts and decomposition periods (0, 7, 14, and 21 days) on germination and seedling growth of mung bean. Various types of phenolics including quercitin, chlorogenic acid, p-coumeric acid, m-coumaric acid, benzoic acid, caffeic acid, syringic acid, vanillic acid, ferulic acid, cinamic acid, and gallic acid were identified in plant parts of B. napus. Among aqueous extracts of various plant parts, leaf and flower were found to have stronger inhibitory effects on germination and seedling growth traits of mung bean, higher concentrations were more toxic. The decomposition period changed the phtotoxic effect of residues, more inhibitory effect was shown at 14 days decomposition while decomposition for 21 days reduced inhibitory effect. The more total water-soluble phenolic was found in 5% (w/v) aqueous extract and 5% (w/w) residues of B. napus flowers at 14 days of decomposition (89.80 and 10.47 mg L-1), respectively. The strong inhibitory effects of B. napus should be managed when followed in rotation.
Assuntos
Brassica napus/química , Produção Agrícola/métodos , Germinação/efeitos dos fármacos , Feromônios/toxicidade , Extratos Vegetais/toxicidade , Vigna/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Feromônios/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Vigna/crescimento & desenvolvimentoRESUMO
Several treatment technologies are available for the treatment of palm oil mill wastes. Vermicomposting is widely recognized as efficient, eco-friendly methods for converting organic waste materials to valuable products. This study evaluates the effect of different vermicompost extracts obtained from palm oil mill effluent (POME) and palm-pressed fiber (PPF) mixtures on the germination, growth, relative toxicity, and photosynthetic pigments of mung beans (Vigna radiata) plant. POME contains valuable nutrients and can be used as a liquid fertilizer for fertigation. Mung bean seeds were sown in petri dishes irrigated with different dilutions of vermicomposted POME-PPF extracts, namely 50, 60, and 70% at varying dilutions. Results showed that at lower dilutions, the vermicompost extracts showed favorable effects on seed germination, seedling growth, and total chlorophyll content in mung bean seedlings, but at higher dilutions, they showed inhibitory effects. The carotenoid contents also decreased with increased dilutions of POME-PPF. This study recommends that the extracts could serve as a good source of fertilizer for the germination and growth enhancement of mung bean seedlings at the recommended dilutions.
Assuntos
Fabaceae/química , Fertilizantes/análise , Germinação/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Resíduos Sólidos/análise , Vigna/crescimento & desenvolvimento , Compostagem , Fertilizantes/toxicidade , Indústria Alimentícia , Óleo de Palmeira , Sementes/efeitos dos fármacos , Vigna/efeitos dos fármacosRESUMO
ABSTRACT Arbuscular mycorrhizal fungi provide several ecosystem services, including increase in plant growth and nutrition. The occurrence, richness, and structure of arbuscular mycorrhizal fungi communities are influenced by human activities, which may affect the functional benefits of these components of the soil biota. In this study, 13 arbuscular mycorrhizal fungi isolates originating from soils with different land uses in the Alto Solimões-Amazon region were evaluated regarding their effect on growth, nutrition, and cowpea yield in controlled conditions using two soils. Comparisons with reference isolates and a mixture of isolates were also performed. Fungal isolates exhibited a wide variability associated with colonization, sporulation, production of aboveground biomass, nitrogen and phosphorus uptake, and grain yield, indicating high functional diversity within and among fungal species. A generalized effect of isolates in promoting phosphorus uptake, increase in biomass, and cowpea yield was observed in both soils. The isolates of Glomus were the most efficient and are promising isolates for practical inoculation programs. No relationship was found between the origin of fungal isolate (i.e. land use) and their symbiotic performance in cowpea.
Assuntos
Solo/química , Microbiologia do Solo , Simbiose/fisiologia , Micorrizas/isolamento & purificação , Micorrizas/fisiologia , Vigna/crescimento & desenvolvimento , Fósforo/análise , Fatores de Tempo , Brasil , Raízes de Plantas/microbiologia , Biodiversidade , Vigna/microbiologia , Nitrogênio/análiseRESUMO
Arbuscular mycorrhizal fungi provide several ecosystem services, including increase in plant growth and nutrition. The occurrence, richness, and structure of arbuscular mycorrhizal fungi communities are influenced by human activities, which may affect the functional benefits of these components of the soil biota. In this study, 13 arbuscular mycorrhizal fungi isolates originating from soils with different land uses in the Alto Solimões-Amazon region were evaluated regarding their effect on growth, nutrition, and cowpea yield in controlled conditions using two soils. Comparisons with reference isolates and a mixture of isolates were also performed. Fungal isolates exhibited a wide variability associated with colonization, sporulation, production of aboveground biomass, nitrogen and phosphorus uptake, and grain yield, indicating high functional diversity within and among fungal species. A generalized effect of isolates in promoting phosphorus uptake, increase in biomass, and cowpea yield was observed in both soils. The isolates of Glomus were the most efficient and are promising isolates for practical inoculation programs. No relationship was found between the origin of fungal isolate (i.e. land use) and their symbiotic performance in cowpea.
Assuntos
Micorrizas/isolamento & purificação , Micorrizas/fisiologia , Microbiologia do Solo , Solo/química , Simbiose/fisiologia , Vigna/crescimento & desenvolvimento , Vigna/microbiologia , Biodiversidade , Brasil , Nitrogênio/análise , Fósforo/análise , Raízes de Plantas/microbiologia , Fatores de TempoRESUMO
BACKGROUND: Cowpea is traditionally cultivated in some regions of southern Europe for its dried seeds; however, there is a scarcity of information on the quality and dietary characteristics of fresh pods, which are occasionally used in folk diets. This paper aims at covering this gap in knowledge, thereby contributing to the dissemination of fresh cowpea pods as a novel product for the market. The quality and dietary characteristics of pods from 37 accessions (Vigna unguiculata ssp. unguiculata and ssp. sesquipedalis) grown in southern Europe were assessed in an attempt to provide information on pod quality and nutritional properties and to identify relationships between quality traits and accession origin. RESULTS: Pods from the sesquipedalis accessions were heavier and larger, and reached commercial maturity 2 days later, than those from the unguiculata accessions. There were also large differences in the quality and dietary characteristics of the accessions. The pods of most accessions were rich in proteins, chlorophylls, carotenoids and phenolics, and showed high antioxidant activity and low concentrations of nitrates and raffinose-family oligosaccharides. Cluster analysis based on quality, dietary or antinutritional traits did not reveal any apparent grouping among the accessions. All the quality characteristics were independent of accession origin and subspecies. CONCLUSION: Most of the accessions produced fresh pods of good quality and high dietary value, suitable for introduction in the market and/or for use as valuable genetic material for the development of new improved varieties. © 2017 Society of Chemical Industry.