Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 26(2): 292-304, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38170172

RESUMO

Black Rot is a grapevine disease caused by the ascomycete Phyllosticta ampelicida. Neglected so far, this is developing into a pertinent problem in organic viticulture as resistant varieties are still lacking. Here, we follow cellular details of the infection process in the susceptible vinifera variety Müller-Thurgau and screen the ancestral European wild grapevine (V. vinifera sylvestris) for resistance to Black Rot. Using a standardized infection assay, we follow fungal development using LTSEM and quantify key stages on different hosts using fluorescence microscopy. There is considerable variation in susceptibility, which is associated with more rapid leaf maturation. Hyphal growth on different carbon sources shows a preference for pectins over starch, cellulose or xylans. In the resistant sylvestris genotypes Ketsch 16 and Ketsch 18 we find that neither spore attachment nor appressorium formation, but hyphal elongation is significantly inhibited as compared to Müller-Thurgau. Moreover, defence-related oxidative burst and accumulation of phenolic compounds is stimulated in the resistant genotypes. We arrive at a model, where more rapid maturation of the cell wall in these sylvestris genotypes sequesters pectins as major food source and thus block hyphal elongation. This paves the way for introgression of genetic factors responsible for cell wall maturation into V. vinifera to develop Black Rot-resistant varieties of grapevine.


Assuntos
Ascomicetos , Vitis , Vitis/genética , Vitis/microbiologia , Doenças das Plantas/microbiologia , Pectinas
2.
J Agric Food Chem ; 71(3): 1643-1654, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36638364

RESUMO

Fruit cracking seriously affects the commercial value of table grapes. To explore whether cell wall disassembly influences grape berry cracking, first, the differences in the cell wall metabolism were compared between cracking-resistant "Shennongjinhuanghou" (SN) and cracking-susceptible "Xiangfei" (XF) varieties. Our results showed that cell wall disassembly events were extremely different between "SN" and "XF." The cracking-resistant "SN" had a higher pectinmethylesterase activity in the early stage and lower polygalacturonase, ß-galactosidase, pectate lyase, and cellulase activities from veraison, cooperatively yielding higher ionically bound pectin, covalently bound pectin, hemicellulose, and lower water-soluble pectin, leading to a stronger skin break force and elasticity and conferring "SN" with higher cracking resistance. Furthermore, the function of the VvPL1 gene in fruit cracking was verified by heterologously transforming tomatoes. The transgenic experiment showed that overexpressed fruits had a higher activity of pectate lyase from the breaking stage and a lower level of covalently bound pectin, ionically bound pectin, cellulose, and hemicellulose and a higher level of water-soluble pectin at the red ripe stage, which resulted in a significantly reduced skin break force and flesh firmness and increased fruit cracking incidences. In conclusion, our results demonstrated that the cracking susceptibility of the grape berry is closely related to cell wall disassembly events and VvPL1 plays an important role in fruit cracking.


Assuntos
Frutas , Vitis , Frutas/genética , Frutas/metabolismo , Vitis/genética , Vitis/metabolismo , Pectinas/metabolismo , Água/metabolismo , Parede Celular/genética , Parede Celular/metabolismo
3.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499201

RESUMO

Phenolic extracts from berry seeds have been extensively studied for their health benefits. However, few studies have been conducted on the effects of phenolic extracts from Vitis L. canes and berry stems. The Chinese spine grape (V. davidii Foex) is an important and widely distributed wild species of Vitis L. The present study explored the metabolomic profile and evaluated the antioxidant activity of phenolic compounds in extracts from V. davidii Foex. canes and stems, with a focus on their role in preventing DNA damage caused by free radicals and inhibiting the growth of breast (MCF-7) and cervical (HeLa) cancer cells. Total phenolic compounds in the dried berry stems of spine grapes were higher than that in vine canes. Analysis of the extracts showed that proanthocyanins, epicatechin, catechin, and phenolic acid were the main phenolic compounds in V. davidii Foex, but in higher quantities in berry stems than in vine canes. However, trans-resveratrol and kaempferol 3-O-glucoside were present in the vine canes but not in the berry stems. Antioxidant analysis by FRAP and ABTS showed that extracts from berry stems and vine canes had a higher antioxidant activity than thinned young fruit shoots before flowering, leaves, peel, pulp, and seeds in V. davidii Foex. Moreover, the antioxidant activity of extracts from berry stems was higher than that in other grape species, except for muscadine. In vitro analyses further showed that the extracts significantly increased H2O2 scavenging ability and conferred a protective effect against DNA damage. Furthermore, a low concentration of phenolic compounds in extracts from the vine canes and berry stems of spine grapes inhibited the proliferation of the MCF-7 and Hela cancer cells. These research results provided some important useful information for the exploitation of V. davidii Foex canes and berry stems and indicated that canes and stems of V. davidii Foex had good antioxidant properties, anticancer activity and prevented DNA damage, providing evidence for medical utilization of V. davidii Foex.


Assuntos
Catequina , Vitis , Vitis/genética , Antioxidantes/farmacologia , Antioxidantes/análise , Peróxido de Hidrogênio , Fenóis/farmacologia , Fenóis/análise , Frutas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/análise
4.
Plant Physiol Biochem ; 171: 147-156, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34999506

RESUMO

Using tolerant genotypes and the correct use of fertilizers can mitigate the negative effect of elevated Cu levels in the growing medium. In this context, the study aimed to evaluate the effects of excess Cu in the root system and the effectiveness of phosphorus (P) in minimizing the phytotoxicity of Cu in three genotypes: IAC 572 [(Vitis riparia x V. rupestris) x V. caribaea], Magnolia (V. rotundifolia) and Paulsen 1103 (V. berlandieri x V. rupestris). The plants were grown in nutrient solutions and were supplemented with the following treatments: 0.3 µM Cu (Control), 60 µM Cu (Cu) and 60 µM Cu and 62 mg L-1 P (Cu + P). Root samples were sectioned for microscopy analyses, and the shoot lengths, shoot and root dry matter, relative growth rates (RGR) and tissue nutrient contents were also evaluated. The roots of the genotypes that were cultivated with high Cu concentrations produced greater numbers of branches and larger diameters, except for Magnolia genotype that was cultivated in a Cu + P solution, which had an organization similar to the control. Excess Cu caused accumulations of phenolic compounds and decreased shoot lengths, dry matter and RGR in the genotypes. In the treatments with excess Cu, there were increases in this element in the tissues, but P decreased the metal concentrations in Magnolia roots. Therefore, Cu accumulations alter the root system development patterns, growth parameters and tissue nutrient contents in the studied genotypes. Magnolia has a higher tolerance and is also the only genotype for which the use of P has been shown to be effective.


Assuntos
Vitis , Genótipo , Fósforo , Raízes de Plantas/genética , Vitis/genética
5.
Genomics ; 113(6): 3793-3803, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34534647

RESUMO

Fruit development is modified by different types of epigenetics. Histone methylation is an important way of epigenetic modification. Eight genes related to H3K4 methyltransferase, named VvH3K4s, were identified and isolated from the grape genome based on conserved domain analysis, which could be divided into 3 categories by the phylogenetic relationship. Transcriptome data showed that VvH3K4-5 was obviously up-regulated during fruit ripe, and its expression level was significantly different between 'Kyoho' and 'Fengzao'. The VvH3K4s promoters contains cis-acting elements of in response to stress, indicating that they may be involved in the metabolic pathways regulated by ROS signaling. The subcellular localization experiment and promoter activity analysis experiment on VvH3K4-5 showed that VvH3K4s may be regulated by H2O2. With H2O2 and Hypotaurine treatment, it was found that the expression pattern of most genes was opposite, and the expression level showed different expression trend with the extension of treatment time.


Assuntos
Vitis , Frutas , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vitis/genética
6.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360903

RESUMO

Despite the fact that many studies have examined the effectiveness of different gaseous postharvest treatments applied at low temperature to maintain table grape quality, the use of ethanol vapor has hardly been investigated. Thus, this work has studied the effectiveness of ethanol vapor-generating sachets in the maintenance of It 681-30 table grape quality, a new cultivar, during storage at low temperature and after the shelf-life period at 20 °C. To this end, various quality assessments have been carried out and the effect of the ethanol treatment on the expression of different genes (phenylpropanoids, transcription factors, PRs, and aquaporins) was determined. The results indicated that the application of ethanol vapor reduced the total decay incidence, weight loss, and the rachis browning index in It 681-30 grapes stored at 0 °C and after the shelf-life period at 20 °C, as compared to non-treated samples. Moreover, the modulation of STS7 and the different PR genes analyzed seems to play a part in the molecular mechanisms activated to cope with fungal attacks during the postharvest of It 681-30 grapes, and particularly during the shelf-life period at 20 °C. Furthermore, the expression of aquaporin transcripts was activated in samples showing higher weight loss. Although further work is needed to elucidate the role of ethanol in table grape quality, the results obtained in this work provide new insight into the transcriptional regulation triggered by ethanol treatment.


Assuntos
Temperatura Baixa , Etanol/farmacologia , Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Qualidade dos Alimentos , Armazenamento de Alimentos/métodos , Frutas/efeitos dos fármacos , Gases/farmacologia , Vitis/efeitos dos fármacos , Aquaporinas/genética , Frutas/genética , Expressão Gênica/efeitos dos fármacos , Reação de Maillard/efeitos dos fármacos , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos , Vitis/genética , Volatilização
7.
Plant Physiol Biochem ; 162: 48-55, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33667966

RESUMO

Calcium supplements have been increasingly used for decay prevention, sanitation and nutritional enrichment of fruits, as more environmentally friendly alternatives to fungicides. However, little is known on the effects of these supplements on grape berry biochemical and molecular properties during storage. In this study, we addressed the hypothesis that the application of calcium chloride (CaCl2) in grapevines throughout the fruiting season reduces damage (and decay) of postharvest grape berries, through several biochemical and transcriptional modifications in sugar transport, secondary metabolism, antioxidant activity, cell wall organization and pathogen defense. Results showed that calcium (Ca) treatments in cv. "Vinhão" vines increased fruit Ca content and significantly decreased fruit damage by 60%, 10-d after storage at 4 °C. Grape berries from Ca-treated vines displayed lower levels of total phenolics and anthocyanins, compared to control fruits, corroborating the downregulation of PAL1 and STS which resulted in decreased non-enzymatic antioxidant capacity estimated by FRAP assay. In contrast, a strong upregulation of CAT1, ASPX1, ASPX3, GLPX1, CSD3 and CSD6 encoding antioxidant enzymes was observed. Accordingly, catalase enzyme activity was stimulated, significantly reducing hydrogen peroxide (H2O2) levels by 36%. The overexpression of the cell wall and pathogen defense genes PME, PGIP, PIN and PR1 likely contributed to the reduction in fruit rot. This work suggested that preharvest Ca treatment is an efficient agronomical strategy that prolongs the shelf life of grape berries through modifications at molecular and biochemical levels, bringing further insight on the benefits and drawbacks of preharvest Ca applications on postharvest fruit quality attributes.


Assuntos
Vitis , Antioxidantes , Cálcio , Fazendas , Frutas , Peróxido de Hidrogênio , Vitis/genética
8.
J Agric Food Chem ; 68(51): 15085-15096, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33315399

RESUMO

The increasing use of plant defense stimulators (PDS) and biostimulants (BS) to make agriculture more sustainable has led to questions about their action on plants. A new PhysBioGen approach is proposed with complementary tools: PHYSiological (root weight); BIOchemical and BIOlogical (secondary metabolite quantification and Plasmopara viticola development) and expressions of 161 GENes involved in metabolic plant functions. The proposed approach investigated the effects of three phytostimulants on Vitis vinifera: one PDS (ASM) and one BS chelated (CH) and another enriched with seaweed (SW). Distinct responses were obtained between the PDS and the two BS. In particular, we observed the persistence of anti-mildew efficacy over time, correlated with differentiated expressions of defense genes (VvROMT, VvSAMT, VvPR8). As expected, the two BS displayed more similarities to each other than to the PDS (flavonols, anthocyanins, free salicylic acid). However, the two BS revealed differences in the modulation of genes involved in defense and primary metabolism and some genes were identified as potential markers of their action (VvWRKY1, VvLOX9, VvPOD, VvPDV1, VvXIP1, VVDnaJ). Our results highlight the common and the specific effects of the two BS and the PDS. These new tools could help in understanding the mode of action of phytostimulants in order to achieve better quality and production yield and/or as a way to limit chemical inputs in the vineyard.


Assuntos
Extratos Vegetais/farmacologia , Tiadiazóis/farmacologia , Vitis/efeitos dos fármacos , Vitis/imunologia , Resistência à Doença , Oomicetos/fisiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Alga Marinha/química , Vitis/genética , Vitis/microbiologia
9.
BMC Genomics ; 21(1): 784, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176674

RESUMO

BACKGROUND: In a previous study, the early ripening of Kyoho grape following H2O2 treatment was explored at the physiological level, but the mechanism by which H2O2 promotes ripening at the molecular level is unclear. To reveal the molecular mechanism, RNA-sequencing analysis was conducted on the different developmental stages of Kyoho berry treated with H2O2. RESULTS: In the comparison of treatment and control groups, 406 genes were up-regulated and 683 were down-regulated. Time course sequencing (TCseq) analysis showed that the expression patterns of most of the genes were similar between the treatment and control, except for some genes related to chlorophyll binding and photosynthesis. Differential expression analysis and the weighted gene co-expression network were used to screen significantly differentially expressed genes and hub genes associated with oxidative stress (heat shock protein, HSP), cell wall deacetylation (GDSL esterase/lipase, GDSL), cell wall degradation (xyloglucan endotransglucosylase/ hydrolase, XTH), and photosynthesis (chlorophyll a-b binding protein, CAB1). Gene expression was verified with RT-qPCR, and the results were largely consistent with those of RNA sequencing. CONCLUSIONS: The RNA-sequencing analysis indicated that H2O2 treatment promoted the early ripening of Kyoho berry by affecting the expression levels of HSP, GDSL, XTH, and CAB1 and- photosynthesis- pathways.


Assuntos
Vitis , Clorofila A , Frutas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio , Transcriptoma , Vitis/genética
10.
Arch Biochem Biophys ; 690: 108471, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32622788

RESUMO

Stilbenes, an active substances closely related to resistance and quality of grapes, are rarely found in natural resources. However its cumulative amount is affected by ultraviolet radiation (UV). The purpose of this study is to screen key genes in biosynthesis of stilbenes Trans-scripusin A and explore its synthetic pathway. We tested content of stilbenes with UHPLC-QQQ-MS2, results revealed that stilbenes accumulation is positively correlated with UV-B exposure time. Then, we performed transcriptome high-throughput sequencing of grapes under treatments. Results shown that 13,906 differentially expressed genes were obtained, which were mainly enriched in three major regions (ribosome, plant-pathogen interaction and biosynthesis of flavonoid). Three genes of trans-scripusin A synthesis pathway key got by combining KEGG annotation and reference gene HsCYP1B1. Phylogenetic analysis showed that SAH genes had high homology with other hydroxylase genes, and distributed in two subgroups. Gene structure analysis showed that SAH genes contained four exons, indicating that gene has low genetic diversity. Chromosome localization revealed that SAH genes were distributed on different chromosomes, in addition, the number of gene pairs between Vitis vinifera and other species was not related to genome size of other species. The expression profiles of SAH genes in different parts of Vitis vinifera L. were analyzed using qRT-PCR analysis, results indicated that expression of SAH genes be specific to fruit part. These paper provide theoretical basis for further study of polyphenols biosynthesis pathway in grape fruits. The study provides novel insights for further understanding quality of grapes response to UV radiation.


Assuntos
Frutas/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , RNA Mensageiro/efeitos da radiação , Vitis/genética , Vias Biossintéticas , Cromatografia Líquida de Alta Pressão , Flavonoides/metabolismo , Frutas/metabolismo , Frutas/efeitos da radiação , Ensaios de Triagem em Larga Escala , Conformação de Ácido Nucleico , Filogenia , Polifenóis/metabolismo , RNA-Seq , Ribossomos/metabolismo , Estilbenos/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos da radiação , Espectrometria de Massas em Tandem , Transcriptoma/efeitos da radiação , Raios Ultravioleta , Vitis/metabolismo , Vitis/efeitos da radiação
11.
PLoS One ; 15(7): e0222747, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32639982

RESUMO

Physiology-based differentiation of SH genes and Hemileia vastatrix races is the principal method employed for the characterization of coffee leaf rust resistance. Based on the gene-for-gene theory, nine major rust resistance genes (SH1-9) have been proposed. However, these genes have not been characterized at the molecular level. Consequently, the lack of molecular data regarding rust resistance genes or candidates is a major bottleneck in coffee breeding. To address this issue, we screened a BAC library with resistance gene analogs (RGAs), identified RGAs, characterized and explored for any SH related candidate genes. Herein, we report the identification and characterization of a gene (gene 11), which shares conserved sequences with other SH genes and displays a characteristic polymorphic allele conferring different resistance phenotypes. Furthermore, comparative analysis of the two RGAs belonging to CC-NBS-LRR revealed more intense diversifying selection in tomato and grape genomes than in coffee. For the first time, the present study has unveiled novel insights into the molecular nature of the SH genes, thereby opening new avenues for coffee rust resistance molecular breeding. The characterized candidate RGA is of particular importance for further biological function analysis in coffee.


Assuntos
Café/genética , Resistência à Doença/genética , Genoma de Planta , Sequência de Aminoácidos , Basidiomycota/fisiologia , Sítios de Ligação , Café/classificação , Biblioteca Gênica , Solanum lycopersicum/classificação , Solanum lycopersicum/genética , Fases de Leitura Aberta/genética , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo Genético , Alinhamento de Sequência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Vitis/classificação , Vitis/genética
12.
J Exp Bot ; 71(21): 6789-6798, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-32584998

RESUMO

Silicon (Si) supplementation has been shown to improve plant tolerance to different stresses, and its accumulation in the aerial organs is mediated by NIP2;1 aquaporins (Lsi channels) and Lsi2-type exporters in roots. In the present study, we tested the hypothesis that grapevine expresses a functional NIP2;1 that accounts for root Si uptake and, eventually, Si accumulation in leaves. Own-rooted grapevine cuttings of the cultivar Vinhão accumulated >0.2% Si (DW) in leaves when irrigated with 1.5 mM Si for 1 month, while Si was undetected in control leaves. Real-time PCR showed that VvNIP2;1 was highly expressed in roots and in green berries. The transient transformation of tobacco leaf epidermal cells mediated by Agrobacterium tumefaciens confirmed VvNIP2;1 localization at the plasma membrane. Transport experiments in oocytes showed that VvNIP2;1 mediates Si and arsenite uptake, whereas permeability studies revealed that VvNIP2;1 expressed in yeast is unable to transport water and glycerol. Si supplementation to pigmented grape cultured cells (cv. Gamay Freáux) had no impact on the total phenolic and anthocyanin content, or on the growth rate and VvNIP2;1 expression. Long-term experiments should help determine the extent of Si uptake over time and whether grapevine can benefit from Si fertilization.


Assuntos
Aquaporinas , Vitis , Aquaporinas/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Silício/metabolismo , Vitis/genética , Vitis/metabolismo
13.
Planta ; 251(4): 88, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32222837

RESUMO

MAIN CONCLUSION: Ubiquitin ligase VpRH2 is a negative regulator in the grape ABA pathway by inhibiting ABL1, PYR1 and GRP2A expressions, and its promoter is inhibited by ABA treatment. In higher plants, ubiquitin ligases play key roles in various cellular processes. As in our previous study (Wang et al. in J Exp Bot 68:1669-1687, 2017), grape RING-H2-type ubiquitin ligase gene VpRH2 and its promoter was induced by powdery mildew and showed resistance to the disease. Diverse small-molecule hormones, like salicylic acid (SA), methyl jasmonate (MeJA) or abscisic acid (ABA), play pivotal roles in plant resistance. Here we found that VpRH2 expression could be induced by SA and MeJA treatment, but inhibited by ABA treatment. The promoter of VpRH2 revealed a similar variation trend under exogenous hormone treatments as the gene expression by GUS activity assay. By a series of deletion fragments, the promoter fragment of VpRH2-P656 to VpRH2-P513 was necessary in response to MeJA treatment, and the inhibition of ABA treatment to the VpRH2 promoter was independent of the ABRE motif. Over-expression of VpRH2 in Arabidopsis thaliana plants displayed ABA-insensitive phenotypes at the germination stage compared to wild type plants. In VpRH2 over-expressing Vitis vinifera cv. Thompson Seedless plants after ABA treatments, the expression of the ABA pathway related genes ABL1 and PYR1 showed a suppresive trend. Moreover, VpGRP2A (an VpRH2-interacting protein) also showed a suppresive trend in response to ABA treatment in VpRH2-overexpressing plants. Our results demonstrate that VpRH2 is a negative regulator in the grape ABA signal pathway by inhibiting ABL1, PYR1 and GRP2A expressions, and its promoter was also inhibited by ABA treatment.


Assuntos
Ácido Abscísico/metabolismo , Ligases/metabolismo , Proteínas de Plantas/metabolismo , Ubiquitina/metabolismo , Vitis/enzimologia , Ácido Abscísico/farmacologia , Acetatos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação , Proteínas de Membrana Transportadoras/metabolismo , Oxilipinas , Doenças das Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ácido Salicílico/metabolismo , Vitis/genética
14.
BMC Genomics ; 20(1): 825, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703618

RESUMO

BACKGROUND: 5-Azacytidine (5-azaC) promotes the development of 'Kyoho' grape berry but the associated changes in gene expression have not been reported. In this study, we performed transcriptome analysis of grape berry at five developmental stages after 5-azaC treatment to elucidate the gene expression networks controlling berry ripening. RESULTS: The expression patterns of most genes across the time series were similar between the 5-azaC treatment and control groups. The number of differentially expressed genes (DEGs) at a given developmental stage ranged from 9 (A3_C3) to 690 (A5_C5). The results indicated that 5-azaC treatment had not very great influences on the expressions of most genes. Functional annotation of the DEGs revealed that they were mainly related to fruit softening, photosynthesis, protein phosphorylation, and heat stress. Eight modules showed high correlation with specific developmental stages and hub genes such as PEROXIDASE 4, CAFFEIC ACID 3-O-METHYLTRANSFERASE 1, and HISTONE-LYSINE N-METHYLTRANSFERASE EZA1 were identified by weighted gene correlation network analysis. CONCLUSIONS: 5-AzaC treatment alters the transcriptional profile of grape berry at different stages of development, which may involve changes in DNA methylation.


Assuntos
Azacitidina/farmacologia , Frutas/crescimento & desenvolvimento , Frutas/genética , Perfilação da Expressão Gênica , Vitis/crescimento & desenvolvimento , Vitis/genética , Frutas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , RNA-Seq , Vitis/efeitos dos fármacos
15.
Genes (Basel) ; 10(7)2019 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-31284601

RESUMO

Previous study has demonstrated that the riboflavin treatment promoted the early ripening of the 'Kyoho' grape berry. However, the molecular mechanism causing this was unclear. In order to reveal the regulation mechanism of riboflavin treatment on grape berry development and ripening, the different berry developmental stages of the 'Kyoho' berry treated with 0.5 mmol/L of riboflavin was sampled for transcriptome profiling. RNA-seq revealed that 1526 and 430 genes were up-regulated and down-regulated, respectively, for the comparisons of the treatment to the control. TCseq analysis showed that the expression patterns of most of the genes were similar between the treatment and the control, except for some genes that were related to the chlorophyll metabolism, photosynthesis-antenna proteins, and photosynthesis, which were revealed by the enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The differentially expressed genes and weighted gene co-expression network analysis (WGCNA) analysis identified some significantly differentially expressed genes and some hub genes, including up-regulation of the photosynthesis-related ELIP1 and growth and development-related GDSL; and down-regulation of the oxidative stress-related ATHSP22 and berry softening-related XTH32 and GH9B15. The results suggested that the riboflavin treatment resulted in the variations of the expression levels of these genes, and then led to the early ripening of the 'Kyoho' berry.


Assuntos
Frutas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Riboflavina/farmacologia , Vitis/efeitos dos fármacos , Frutas/genética , RNA-Seq , Vitis/genética
16.
J Food Biochem ; 43(6): e12626, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31353617

RESUMO

This study evaluated the total phenolic content, phenolic composition, antioxidant and in vitro antiproliferative properties of seeds and skins of 31 different grape cultivars. These properties of seeds and skins varied greatly among grape cultivars. European grapes had the highest values of phenolic compounds, antioxidant properties in seeds followed by Muscadine > American grapes > Oriental grapes. European grape seed extracts also were the strongest in inhibiting the growth of HepG2 cell, followed by American grapes > Muscadine > Oriental grapes. While these values of the Euro-Asian or Euro-American hybrids fell between the parents. However, the differences of these values in skin extracts among different grape cultivars were not significant. The antiproliferative activities were significantly correlated to the three antioxidant assays and the main phenolic compounds. PRACTICAL APPLICATIONS: This study presents phenolic compounds, antioxidant, and in vitro antiproliferative properties of seeds and skins of 31 different grape cultivars. The information is highly relevant to the ever-increasing need for natural sources of antioxidants or nutraceuticals among consumers. The study also provides information for grape geneticists to breed cultivars with higher nutritional value, and for food scientists to exploit the natural polyphenol antioxidants in various grape pomace.


Assuntos
Antioxidantes/análise , Extrato de Sementes de Uva/farmacologia , Fenóis/análise , Vitis , Linhagem Celular Tumoral/efeitos dos fármacos , Frutas/química , Genótipo , Células Hep G2 , Humanos , Valor Nutritivo , Polifenóis/análise , Sementes/química , Vitis/química , Vitis/genética
17.
J Sci Food Agric ; 99(13): 5946-5952, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31206683

RESUMO

BACKGROUND: Grape berries produce significant amounts of phenolic compounds. These are an essential qualitative factor due to their nutritional value and effect on berry color and texture. Salicylic acid (SA) and its derivatives usually lead to enhancement of phenolic content in plant tissues. The present study was conducted to evaluate the effect of different levels of SA (0.0, 50.0, 100.0, and 200.0 mM) on the production of phenolic compounds and the derivatives (anthocyanin and flavonoid) in the grape berries, with emphasis on malvidin-3-O-ß glucoside as a regular anthocyanin in red grapes. RESULT: The results showed that total phenolics content were significantly enhanced in SA-treated (100.0 and 200.0 mM) berries compared to untreated ones. Salicylic acid treatment at all concentrations considerably improved the anthocyanin content in the berries and, compared with untreated berries, the accumulation of malvidin-3-O-ß glucoside was higher in SA-treated fruits. In particular, the 200.0 mM concentration caused approximately two times more malvidin-3-O-ß glucoside than the control. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity of the fruits treated with SA were significantly higher than those of the untreated berries. The activity of phenylalanine ammonia-lyase (PAL) in SA treated fruits significantly increased as compared with the untreated clusters. CONCLUSION: A general evaluation of the current results leads us to the conclusion that SA is a suitable and recommendable treatment for improving and increasing the phenolic and antioxidant capacity of grape berries. Spraying grape berries at pre-véraison stage with SA could therefore be a convenient strategy to increase quality and nutritional value of grape berries considerably. © 2019 Society of Chemical Industry.


Assuntos
Antocianinas/química , Frutas/química , Extratos Vegetais/química , Ácido Salicílico/farmacologia , Vitis/química , Antioxidantes/metabolismo , Cor , Frutas/efeitos dos fármacos , Fenóis/química , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/efeitos dos fármacos , Vitis/genética
18.
Nat Plants ; 5(6): 595-603, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31182840

RESUMO

The Eurasian grapevine (Vitis vinifera) has long been important for wine production as well as being a food source. Despite being clonally propagated, modern cultivars exhibit great morphological and genetic diversity, with thousands of varieties described in historic and contemporaneous records. Through historical accounts, some varieties can be traced to the Middle Ages, but the genetic relationships between ancient and modern vines remain unknown. We present target-enriched genome-wide sequencing data from 28 archaeological grape seeds dating to the Iron Age, Roman era and medieval period. When compared with domesticated and wild accessions, we found that the archaeological samples were closely related to western European cultivars used for winemaking today. We identified seeds with identical genetic signatures present at different Roman sites, as well as seeds sharing parent-offspring relationships with varieties grown today. Furthermore, we discovered that one seed dated to ~1100 CE was a genetic match to 'Savagnin Blanc', providing evidence for 900 years of uninterrupted vegetative propagation.


Assuntos
Produtos Agrícolas/genética , Variação Genética , Vitis/genética , Arqueologia , Produtos Agrícolas/história , França , História Antiga , Polimorfismo de Nucleotídeo Único , Sementes/genética , Vinho
19.
Plant Cell Rep ; 38(9): 1127-1137, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31154513

RESUMO

KEY MESSAGE: Genetically engineered onion expressing codon-optimized VvSTS1 gene accumulated stilbenes and extended life span in yeast and can serve as potential nutraceutical. Resveratrol (RV) is a natural polyphenolic compound found in certain plant species including grapes. RV is well known for its nutraceutical properties and to assuage several disease conditions. Onion is the second most consumed vegetable worldwide and contains large quantities of precursor molecules, malonyl-CoA and para-coumaroyl-CoA that are needed for RV biosynthesis. The present study reports the development of nutraceutical onion by engineering RV biosynthetic pathway. A codon-optimized grapevine synthetic stilbene synthase gene (VvSTS1) was synthesized using native grapevine sequence. Six-week-old healthy yellowish compact nodular calli were co-cultivated with Agrobacterium tumefaciens harbouring pCAMBIA1300-hpt II-CaMV35S-VvSTS1-nos. PCR analysis revealed the presence of VvSTS1 and hpt II genes in putative transgenics. Southern blot analysis confirmed the integration of VvSTS1 gene and independent nature of transformants. LC-ESI-HRMS analysis revealed the accumulation of variable quantities of RV (24.98-50.18 µg/g FW) and its glycosylated form polydatin (33.6-67.15 µg/g FW) in both leaves and bulbs, respectively, indicating the successful engineering of RV biosynthetic pathway into onion. The transgenic onion bulb extracts extended the life span in haploid yeast. The transgenic onion accumulating RV and polydatin, developed for the first of its kind, may serve as a potential nutraceutical resource.


Assuntos
Glucosídeos/metabolismo , Cebolas/genética , Proteínas de Plantas/genética , Resveratrol/metabolismo , Estilbenos/metabolismo , Vitis/enzimologia , Aciltransferases/genética , Aciltransferases/metabolismo , Vias Biossintéticas , Suplementos Nutricionais , Cebolas/química , Cebolas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Vitis/genética
20.
BMC Plant Biol ; 19(1): 194, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31077147

RESUMO

BACKGROUND: Our study is the first to provide RNA-Seq data analysis related to transcriptomic responses towards drought across different crops. The aim was to identify and map which genes play a key role in drought response on leaves across different crops. Forty-two RNA-seq samples were analyzed from 9 published studies in 7 plant species (Arabidopsis thaliana, Solanum lycopersicum, Zea mays, Vitis vinifera, Malus X domestica, Solanum tuberosum, Triticum aestivum). RESULTS: Twenty-seven (16 up-regulated and 11 down-regulated) drought-regulated genes were commonly present in at least 7 of 9 studies, while 351 (147 up-regulated and 204 down-regulated) were commonly drought-regulated in 6 of 9 studies. Across all kind of leaves, the drought repressed gene-ontologies were related to the cell wall and membrane re-structuring such as wax biosynthesis, cell wall organization, fatty acid biosynthesis. On the other hand, drought-up-regulated biological processes were related to responses to osmotic stress, abscisic acid, water deprivation, abscisic-activated signalling pathway, salt stress, hydrogen peroxide treatment. A common metabolic feature linked to drought response in leaves is the repression of terpenoid pathways. There was an induction of AL1 (alfin-like), UGKYAH (trihelix), WRKY20, homeobox genes and members of the SET domain family in 6 of 9 studies. Several genes involved in detoxifying and antioxidant reactions, signalling pathways and cell protection were commonly modulated by drought across the 7 species. The chromosome (Chr) mapping of these key abiotic stress genes highlighted that Chr 4 in Arabidopsis thaliana, Chr 1 in Zea mays, Chr 2 and Chr 5 in Triticum aestivum contained a higher presence of drought-related genes compared to the other remaining chromosomes. In seedling studies, it is worth notice the up-regulation of ERF4 and ESE3 (ethylene), HVA22 (abscisic acid), TIR1 (auxin) and some transcription factors (MYB3, MYB94, MYB1, WRKY53 and WRKY20). In mature leaves, ERF1 and Alfin-like 1 were induced by drought while other transcription factors (YABBY5, ARR2, TRFL2) and genes involved phospholipid biosynthesis were repressed. CONCLUSIONS: The identified and mapped genes might be potential targets of molecular breeding activities to develop cultivars with enhanced drought resistance and tolerance across different crops.


Assuntos
Cromossomos de Plantas/genética , Produtos Agrícolas/genética , Genes de Plantas/genética , Folhas de Planta/metabolismo , RNA de Plantas/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Mapeamento Cromossômico , Cromossomos de Plantas/fisiologia , Desidratação , Genes de Plantas/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Malus/genética , Malus/fisiologia , Folhas de Planta/anatomia & histologia , RNA de Plantas/fisiologia , Solanum tuberosum/genética , Solanum tuberosum/fisiologia , Triticum/genética , Triticum/fisiologia , Vitis/genética , Vitis/fisiologia , Zea mays/genética , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA