Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 403
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 898, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195662

RESUMO

As human spaceflight increases in duration, cultivation of crops in spaceflight is crucial to protecting human health under microgravity and elevated oxidative stress. Foodborne pathogens (e.g., Salmonella enterica) carried by leafy green vegetables are a significant cause of human disease. Our previous work showed that Salmonella enterica serovar Typhimurium suppresses defensive closure of foliar stomata in lettuce (Lactuca sativa L.) to ingress interior tissues of leaves. While there are no reported occurrences of foodborne disease in spaceflight to date, known foodborne pathogens persist aboard the International Space Station and space-grown lettuce has been colonized by a diverse microbiome including bacterial genera known to contain human pathogens. Interactions between leafy green vegetables and human bacterial pathogens under microgravity conditions present in spaceflight are unknown. Additionally, stomatal dynamics under microgravity conditions need further elucidation. Here, we employ a slow-rotating 2-D clinostat to simulate microgravity upon in-vitro lettuce plants following a foliar inoculation with S. enterica Typhimurium and use confocal microscopy to measure stomatal width in fixed leaf tissue. Our results reveal significant differences in average stomatal aperture width between an unrotated vertical control, plants rotated at 2 revolutions per minute (2 RPM), and 4 RPM, with and without the presence of S. typhimurium. Interestingly, we found stomatal aperture width in the presence of S. typhimurium to be increased under rotation as compared to unrotated inoculated plants. Using confocal Z-stacking, we observed greater average depth of stomatal ingression by S. typhimurium in lettuce under rotation at 4 RPM compared to unrotated and inoculated plants, along with greater in planta populations of S. typhimurium in lettuce rotated at 4 RPM using serial dilution plating of homogenized surface sterilized leaves. Given these findings, we tested the ability of the plant growth-promoting rhizobacteria (PGPR) Bacillus subtilis strain UD1022 to transiently restrict stomatal apertures of lettuce both alone and co-inoculated with S. typhimurium under rotated and unrotated conditions as a means of potentially reducing stomatal ingression by S. typhimurium under simulated microgravity. Surprisingly, rotation at 4 RPM strongly inhibited the ability of UD1022 alone to restrict stomatal apertures and attenuated its efficacy as a biocontrol following co-inoculation with S. typhimurium. Our results highlight potential spaceflight food safety issues unique to production of crops in microgravity conditions and suggest microgravity may dramatically reduce the ability of PGPRs to restrict stomatal apertures.


Assuntos
Voo Espacial , Ausência de Peso , Humanos , Lactuca , Salmonella typhimurium , Produtos Agrícolas
2.
Life Sci Space Res (Amst) ; 40: 106-114, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245335

RESUMO

The Veggie plant-growth unit deployed onboard the International Space Station (ISS) grows leafy vegetables to supplement crew diets. "Cut-and-come-again" harvests are tested to maximize vegetative yield while minimizing crew time. Water, oxygen, and fertilizer delivery to roots of leafy greens growing in microgravity have become the center of attention for Veggie. Current Veggie technology wicks water into particulate root substrates incorporating controlled-release fertilizer (CRF). Mizuna mustard (Brassica rapa) was grown under ISS-like environments in ground-based Veggie-analogue units comparing crop response to combinations of two different substrate particle sizes, two different fertilizer formulations, and three leaf-harvest times from each plant. Fine-particle porous ceramic substrate (Profile©) was compared with a 40:60 mix of fine-particle porous ceramic Profile© + coarse porous ceramic Turface© substrate. Identical 18-6-8 (NPK) CRF formulations consisting of [50% fast-release (T70) + 50% intermediate-release (T100) prills] vs. [50% fast-release (T70) + 50% slow-release (T180) prills] were incorporated into each substrate, and leaf tissues were harvested from each treatment combination at 28, 48, and 56 days after sowing. The combination of T100 CRF in 100% Profile© substrate gave the highest fresh mass (FM) and leaf area (LA) across harvests, whereas T180 CRF in 40% Profile© gave the lowest. Dry-mass (DM) yields varied with effects on leaf area. Tissue nitrogen (N) and potassium (K) specific contents declined across harvests for all treatment combinations but tended to be highest for T100 CRF/100% Profile©, and lowest for T180 CRF/40% Profile©. These major macronutrients were taken up faster by roots growing in small particle-size substrate incorporating intermediate-rate CRF, but also were depleted faster from the same treatment combination, suggesting it may not continue to be the best combination for additional harvests. Micronutrients did not decline in tissue specific content across treatment combinations, but manganese (Mn) accumulated in leaf tissue across treatments and apparently comes mainly from the ceramic substrate, regardless of particle size. Substrate leachate analysis following final harvest indicated that pH remained in the range for nominal availability of mineral nutrients for root uptake, but electro-conductivity measurements suggested depletion of fertilizer salts from root zones, especially from the treatment combination supporting the highest yields and major macronutrient contents. Although 100% Profile© was the better growth substrate for mizuna in combination with intermediate-rate CRF and three cut-and-come-again harvests in ground-based studies, mixed-particle-size substrates may be a better choice for plant growth under microgravity conditions, where capillary forces predominant and tend to cause saturation of a fine medium with water. Since there were no statistically significant interactions between substrate and fertilizer in this study, our ground-based findings for CRF choice should translate to the best substrate choice for microgravity, but if NASA wants to consider additional cut-and-come-again harvests from the same mizuna plants, more complex CRF formulations likely will have to be investigated.


Assuntos
Fertilizantes , Voo Espacial , Fertilizantes/análise , Tamanho da Partícula , Minerais/análise , Folhas de Planta , Água
3.
Sci China Life Sci ; 66(6): 1426-1439, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36811801

RESUMO

Ecology seeks to explain species coexistence, but experimental tests of mechanisms for coexistence are difficult to conduct. We synthesized an arbuscular mycorrhizal (AM) fungal community with three fungal species that differed in their capacity of foraging for orthophosphate (P) due to differences in soil exploration. We tested whether AM fungal species-specific hyphosphere bacterial assemblages recruited by hyphal exudates enabled differentiation among the fungi in the capacity of mobilizing soil organic P (Po). We found that the less efficient space explorer, Gigaspora margarita, obtained less 13C from the plant, whereas it had higher efficiencies in Po mobilization and alkaline phosphatase (AlPase) production per unit C than the two efficient space explorers, Rhizophagusintraradices and Funneliformis mosseae. Each AM fungus was associated with a distinct alp gene harboring bacterial assemblage, and the alp gene abundance and Po preference of the microbiome associated with the less efficient space explorer were higher than those of the two other species. We conclude that the traits of AM fungal associated bacterial consortia cause niche differentiation. The trade-off between foraging ability and the ability to recruit effective Po mobilizing microbiomes is a mechanism that allows co-existence of AM fungal species in a single plant root and surrounding soil habitat.


Assuntos
Microbiota , Micorrizas , Voo Espacial , Micorrizas/metabolismo , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Fungos/genética , Fungos/metabolismo , Solo , Bactérias/metabolismo , Microbiologia do Solo
4.
Life Sci Space Res (Amst) ; 36: 105-115, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36682819

RESUMO

RATIONALE AND HYPOTHESIS: Advancements in technology, human adaptability, and funding have increased space exploration and in turn commercial spaceflight. Corporations such as Space X and Blue Origin are exploring methods to make space tourism possible. This could lead to an increase in the number of patients presenting with neurological diseases associated with spaceflight. Therefore, a comprehensive understanding of spaceflight stressors is required to manage neurological disease in high-risk individuals. OBJECTIVES: This review aims to describe the neurological effects of spaceflight and to assess countermeasures such as pre-flight prophylaxis, training, and possible therapeutics to reduce long-term effects. METHODOLOGY: A literature search was performed for experimental studies conducted in astronauts and in animal models that simulated the space environment. Many studies, however, only discussed these with scientific reasoning and did not include any experimental methods. Relevant studies were identified through searching research databases such as PubMed and Google Scholar. No inclusion or exclusion criteria were used. FINDINGS: Analysis of these studies provided a holistic understanding of the acute and chronic neurological changes that occur during space flight. Astronauts are exposed to hazards that include microgravity, cosmic radiation, hypercapnia, isolation, confinement and disrupted circadian rhythms. Microgravity, the absence of a gravitational force, is linked to disturbances in the vestibular system, intracranial and intraocular pressures. Furthermore, microgravity affects near field vision as part of the spaceflight-associated neuro-ocular syndrome. Exposure to cosmic radiation can increase the risk of neurodegenerative conditions and malignancies. It is estimated that cosmic radiation has significantly higher ionising capabilities than the ionising radiation used in medicine. Space travel also has potential benefits to the nervous system, including psychological development and effects on learning and memory. Future work needs to focus on how we can compare a current astronaut to a future space tourist. Potentially the physiological and psychological stresses of space flight might lead to neurological complications in future space travellers that do not have the physiological reserve of current astronauts.


Assuntos
Neurologia , Voo Espacial , Ausência de Peso , Animais , Humanos , Transtornos da Visão/etiologia , Astronautas , Ausência de Peso/efeitos adversos
5.
Med Sci Sports Exerc ; 55(3): 365-375, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36251376

RESUMO

INTRODUCTION: We sought to isolate the microgravity effect of spaceflight from other space stressors by characterizing the leukocytes' transcriptome of participants to a 60-d bed rest study; an Earth model of microgravity. METHODS: Twenty healthy men received a nutritional supplement or not and 10 blood samples were collected throughout three study phases: baseline data collection (BDC) (BDC-12, BDC-11), head-down tilt (HDT) bed rest (HDT1, HDT2, HDT30, HDT60), and reambulation (R1, R2, R12, R30). We measured gene expression through RNA sequencing of leukocytes, applied generalized linear models to assess differential expression followed by enrichment analysis to identify temporal changes (model 1) and to measure the impact of a nutritional supplement (model 2). RESULTS: Baseline transcriptomes included 14,624 protein-coding transcripts and showed both high intraindividual correlations (mean Kendall coefficient, 0.91 ± 0.04) and interindividual homogeneity (0.89 ± 0.03). We identified 2415 differentially expressed protein-coding transcripts grouping into six clusters (C1-C6). At phase transitions, clusters showed either a decrease-then-increase (C3 and C5) or an increase-then-decrease (C1, C2, C6) pattern. All six clusters converged toward average expression at HDT30 and HDT60. Gene ontology terms at baseline related to immune functions while in bed rest and reambulation related to sequestration of ions, immune response, cellular stress, and mineralization. The nutritional intervention had no effect. CONCLUSIONS: The temporal profiles of leukocytes' transcriptomes emphasized the dynamic nature of gene expression occurring during and after bed rest. Enriched biological processes among the differentially expressed genes included immune related and unrelated responses. The convergence toward no differential expression at days 30 and 60 of bed rest suggests a hypometabolic state. Current findings can guide future work on the complex responses and adaptation mechanisms to microgravity.


Assuntos
Voo Espacial , Ausência de Peso , Masculino , Humanos , Repouso em Cama , Transcriptoma , Leucócitos , Simulação de Ausência de Peso
6.
Aerosp Med Hum Perform ; 94(12): 923-933, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176031

RESUMO

BACKGROUND: Bone mineral density (BMD) is a measure of skeletal health that may foretell disorders like osteoporosis.METHODS: To reduce bone losses on Earth, treatments include exercise, diet, and drugs. Each impact osteoblast and osteoclast activity dictates skeletal remodeling and subsequent BMD changes. BMD loss is a concern during spaceflight. For astronauts, low BMD undermines in-flight tasks and compromises their postflight health.RESULTS: While bisphosphonates exhibited promise as an in-flight bone loss treatment, study results are mixed, and this class of drugs has numerous side-effects. While the role antiresorptive agents play in reducing BMD loss is discussed, this review focuses on exercise-induced strains and nutrition, two in-flight treatments without bisphosphonates' side-effects.DISCUSSION: Evidence supports in-flight exercise and a healthy diet with vitamin D and Ca+2 supplementation to limit BMD loss. This review suggests how exercise and nutrition may limit BMD loss during spaceflight. Also discussed is an in-flight version of the inertial exercise trainer (IET; Impulse Technologies, Knoxville TN). By imparting high bone-strain magnitudes, rates, and frequencies with less mass, footprint, and power needs than other forms of in-flight resistance exercise hardware, the IET warrants inquiry for use aboard future long-term spaceflights.Caruso J, Patel N, Wellwood J, Bollinger L. Impact of exercise-induced strains and nutrition on bone mineral density in spaceflight and on the ground. Aerosp Med Hum Perform. 2023; 94(12):923-933.


Assuntos
Densidade Óssea , Exercício Físico , Estado Nutricional , Voo Espacial , Humanos , Astronautas , Osso e Ossos , Difosfonatos/farmacologia , Exercício Físico/efeitos adversos
7.
Artigo em Inglês | MEDLINE | ID: mdl-34533451

RESUMO

BACKGROUND: Probiotics are a group of bacteria that play a critical role in intestinal microbiota homeostasis and may help adjunctively treat certain diseases like metabolic and immune disorders. OBJECTIVE: We recently generated a space-flight mutated Lactobacillus plantarum SS18-50 with good in vitro probiotic characteristics. In the current research, we designed two in vivo experiments to evaluate whether L. plantarum SS18-50 had the ability to increase beneficial gut bacteria, regulate oxidative status and ameliorate inflammation in mice. METHODS: Experiments I: the ICR mice were gavaged with L. plantarum SS18-50 or its wild type L. plantarum GS18 at 107 or 109 CFU/kg BW daily for one month, during which the body weight was recorded weekly. The feces were collected to determine the abundance of two main beneficial bacterial groups including Lactobacillus and Bifidobacterium by selective culturing, while the total triglycerides and cholesterols in sera were determined using commercial kits. Experiment II: the mice were gavaged with loperamide hydrochloride (Lop) to develop oxidative stress and inflammation phenotypes. At the same time, the experimental mice were gavaged with L. plantarum SS18-50 or wild type L. plantarum GS18 at 107 or 109 CFU/kg BW daily for one month. At the end of the experiment, oxidative indicators (SOD and MDA) and inflammatory cytokines (IL-17A and IL-10) were measured by commercial kits. RESULTS: Results showed that L. plantarum SS18-50 increased the abundance of Lactobacillus and Bifidobacterium in mice after one month's administration. L. plantarum SS18-50 also showed the anti-oxidant activity by increasing SOD and decreasing MDA and exerted the anti-inflammatory effect by increasing IL-10 and decreasing IL-17A in Lop treated mice. Both the wild type stain and the space mutant had such biomedical effects, but L. plantarum SS18-50 was better in increasing gut beneficial bacteria and oxidative regulation than the wild type (P<0.05). CONCLUSION: We conclude that L. plantarum SS18-50 has a great potential to serve as a dietary functional probiotic supplement and/or adjunctive treatment strategy.


Assuntos
Arum , Lactobacillus plantarum , Probióticos , Voo Espacial , Animais , Bactérias , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Interleucina-10 , Interleucina-17 , Lactobacillus , Lactobacillus plantarum/genética , Camundongos , Camundongos Endogâmicos ICR , Probióticos/farmacologia , Superóxido Dismutase
8.
Astrobiology ; 22(S1): S217-S237, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34904886

RESUMO

The most important single element of the "ground system" portion of a Mars Sample Return (MSR) Campaign is a facility referred to as the Sample Receiving Facility (SRF), which would need to be designed and equipped to receive the returned spacecraft, extract and open the sealed sample container, extract the samples from the sample tubes, and implement a set of evaluations and analyses of the samples. One of the main findings of the first MSR Sample Planning Group (MSPG, 2019a) states that "The scientific community, for reasons of scientific quality, cost, and timeliness, strongly prefers that as many sample-related investigations as possible be performed in PI-led laboratories outside containment." There are many scientific and technical reasons for this preference, including the ability to utilize advanced and customized instrumentation that may be difficult to reproduce inside in a biocontained facility, and the ability to allow multiple science investigators in different labs to perform similar or complementary analyses to confirm the reproducibility and accuracy of results. It is also reasonable to assume that there will be a desire for the SRF to be as efficient and economical as possible, while still enabling the objectives of MSR to be achieved. For these reasons, MSPG concluded, and MSPG2 agrees, that the SRF should be designed to accommodate only those analytical activities that could not reasonably be done in outside laboratories because they are time- or sterilization-sensitive, are necessary for the Sample Safety Assessment Protocol (SSAP), or are necessary parts of the initial sample characterization process that would allow subsamples to be effectively allocated for investigation. All of this must be accommodated in an SRF, while preserving the scientific value of the samples through maintenance of strict environmental and contamination control standards. Executive Summary The most important single element of the "ground system" portion of a Mars Sample Return (MSR) Campaign is a facility referred to as the Sample Receiving Facility (SRF), which would need to be designed and equipped to enable receipt of the returned spacecraft, extraction and opening of the sealed sample container, extraction of the samples from the sample tubes, and a set of evaluations and analyses of the samples-all under strict protocols of biocontainment and contamination control. Some of the important constraints in the areas of cost and required performance have not yet been set by the necessary governmental sponsors, but it is reasonable to assume there will be a desire for the SRF to be as efficient and economical as is possible, while still enabling the objectives of MSR science to be achieved. Additionally, one of the main findings of MSR Sample Planning Group (MSPG, 2019a) states "The scientific community, for reasons of scientific quality, cost, and timeliness, strongly prefers that as many sample-related investigations as possible be performed in PI-led laboratories outside containment." There are many scientific and technical reasons for this preference, including the ability to utilize advanced and customized instrumentation that may be difficult to reproduce inside a biocontained facility. Another benefit is the ability to enable similar or complementary analyses by multiple science investigators in different laboratories, which would confirm the reproducibility and accuracy of results. For these reasons, the MSPG concluded-and the MSR Science Planning Group Phase 2 (MSPG2) agrees-that the SRF should be designed to accommodate only those analytical activities inside biocontainment that could not reasonably be done in outside laboratories because such activities are time-sensitive, sterilization-sensitive, required by the Sample Safety Assessment Protocol (SSAP), or are necessary parts of the initial sample characterization process that would allow subsamples to be effectively allocated for investigation. All activities within the SRF must be done while preserving the scientific value of the samples through maintenance of strict environmental and contamination control standards. The SRF would need to provide a unique environment that consists of both Biosafety Level 4 (BSL-4) equivalent containment and a very high level of contamination control. The SRF would also need to accommodate the following activities: (1)Receipt of the returned spacecraft, presumably in a sealed shipping container (2)De-integration (i.e., disassembly) and assessment of the returned system, beginning with the spacecraft exterior and ending with accessing and isolating all Mars material (gas, dust, regolith, and rock) (3)Initial sample characterization, leading to development of a sample catalog sufficient to support sample allocation (see Tait et al., 2022) (4)Science investigations necessary to complete the SSAP (see Kminek et al., 2021) (5)Certain science investigations that are both time- and sterilization-sensitive (see Tosca et al., 2022; Velbel et al., 2022) (6)A managed transition to post-SRF activities that would include analysis of samples (either sterilized or not) outside biocontainment and the transfer of some or all samples to one or more uncontained curation facilities The MSPG2 has produced a compilation of potential design requirements for the SRF, based on the list of activities noted above, that can be used in cost and schedule planning. The text of this report is meant to serve as an overview and explanation of these proposed SRF Design Requirements that have been compiled by the MSPG2 SRF Requirements Focus Group (Supplement 1). Summary of Findings FINDING SRF-1: The quality of the science that can be achieved with the MSR samples will be negatively impacted if they are not protected from contamination and inappropriate environmental conditions. A significant amount of SRF infrastructure would therefore be necessary to maintain and monitor appropriate levels of cleanliness, contamination control, and environmental conditions. FINDING SRF-2: Although most MSR sample investigations would take place outside of the SRF, the SRF needs to include significant laboratory capabilities with advanced instruments and associated sample preparation systems to enable the MSR science objectives to be successfully achieved. FINDING SRF-3: Preliminary studies of different operational scenarios should be started as soon as possible to enable analysis of the trade-offs between the cost and size of the SRF and the amount of time needed to prepare the samples for allocation and analysis. FINDING SRF-4: The ability to add additional analytical capabilities within biocontainment should be preserved to address the contingency scenario in which unsterilized material is not cleared to be analyzed outside of biocontainment. If potential evidence of martian life were to be detected in the samples, for example, it would be a high priority to conduct further investigations related to any putative lifeforms, as well as to enable other sterilization-sensitive science investigations to be conducted in biocontainment.


Assuntos
Marte , Voo Espacial , Meio Ambiente Extraterreno , Extratos Vegetais , Reprodutibilidade dos Testes , Astronave
9.
Bioelectromagnetics ; 42(6): 516-531, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34245597

RESUMO

The future of mankind is tied to the exploration and eventual colonization of space. Currently, people have resided in orbit at a space station. In the future, we will have opportunities to stay on the moon, Mars, or in deeper space, where astronauts are exposed to the hypomagnetic field (HMF), which refers to an extremely weak magnetic field environment compared with the geomagnetic field. However, the potential risks of HMF exposure to human health are often overlooked. Here, we summarize the literature related to the biological effects of HMF and calculate the magnitude of the effect. Briefly, HMF impairs multiple animal systems, especially in the central nervous system. Additionally, HMF is a stress factor in plant growth and reproduction. Finally, HMF combined with other space environments, such as radiation and microgravity, can affect organisms. Further studies are required to explore (i) countermeasures to the adverse effects of HMF, (ii) combined effects of HMF with other factors, and (iii) the intensity-effect relationship. © 2021 Bioelectromagnetics Society.


Assuntos
Voo Espacial , Animais , Sistema Nervoso Central , Humanos , Campos Magnéticos
10.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925533

RESUMO

Microgravity-induced bone loss is currently a significant and unresolved health risk for space travelers, as it raises the likelihood for irreversible changes that weaken skeletal integrity and the incremental onset of fracture injuries and renal stone formation. Another issue related to bone tissue homeostasis in microgravity is its capacity to regenerate following fractures due to weakening of the tissue and accidental events during the accomplishment of particularly dangerous tasks. Today, several pharmacological and non-pharmacological countermeasures to this problem have been proposed, including physical exercise, diet supplements and administration of antiresorptive or anabolic drugs. However, each class of pharmacological agents presents several limitations as their prolonged and repeated employment is not exempt from the onset of serious side effects, which limit their use within a well-defined range of time. In this review, we will focus on the various countermeasures currently in place or proposed to address bone loss in conditions of microgravity, analyzing in detail the advantages and disadvantages of each option from a pharmacological point of view. Finally, we take stock of the situation in the currently available literature concerning bone loss and fracture healing processes. We try to understand which are the critical points and challenges that need to be addressed to reach innovative and targeted therapies to be used both in space missions and on Earth.


Assuntos
Osso e Ossos/metabolismo , Ausência de Peso/efeitos adversos , Doenças Ósseas Metabólicas/metabolismo , Cálcio , Exercício Físico/fisiologia , Humanos , Voo Espacial
11.
Neurosci Biobehav Rev ; 126: 236-242, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33757818

RESUMO

Endocrine and metabolic changes that typically accompany aging on Earth have been consistently observed in space. Support for the role of gravity in aging has mostly come from ground simulation studies in head down bed rest. However, uncertainties remain and have to be resolved in planning for the ambitious enterprise of sending humans to Mars and back. Stress-related corticosteroid changes and metabolic adaptation to microgravity and their relationship with aging are the object of the present review mostly, albeit of course non exclusively, coming from the personal experience of the authors. The picture coming out of it is that of some, not easily proven, stress-induced cortisol increase accompanied by insulin resistance, both of which represent typical aging-like phenomena mediated by chronic low-grade inflammation. This suggests the need for humans to consider the long journey to safely land, live and work on Mars by taking advantage of integrative medicine solutions including synthetic torpor and/or continuous self-monitoring of eating, sleeping, moving to enable remotely supervised self-treatment.


Assuntos
Voo Espacial , Ausência de Peso , Adaptação Fisiológica , Envelhecimento , Repouso em Cama , Humanos
12.
Nutrients ; 13(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535596

RESUMO

Since the Moon landing, nutritional research has been charged with the task of guaranteeing human health in space. In addition, nutrition applied to Orthopedics has developed in recent years, driven by the need to improve the efficiency of the treatment path by enhancing the recovery after surgery. As a result, nutritional sciences have specialized into two distinct fields of research: Nutritional Orthopedics and Space Nutrition. The former primarily deals with the nutritional requirements of old patients in hospitals, whereas the latter focuses on the varied food challenges of space travelers heading to deep space. Although they may seem disconnected, they both investigate similar nutritional issues. This scoping review shows what these two disciplines have in common, highlighting the mutual features between (1) pre-operative vs. pre-launch nutritional programs, (2) hospital-based vs. space station nutritional issues, and (3) post-discharge vs. deep space nutritional resilience. PubMed and Google Scholar were used to collect documents published from 1950 to 2020, from which 44 references were selected on Nutritional Orthopedics and 44 on Space Nutrition. Both the orthopedic patient and the astronaut were found to suffer from food insecurity, malnutrition, musculoskeletal involution, flavor/pleasure issues, fluid shifts, metabolic stresses, and isolation/confinement. Both fields of research aid the planning of demand-driven food systems and advanced nutritional approaches, like tailored diets with nutrients of interest (e.g., vitamin D and calcium). The nutritional features of orthopedic patients on Earth and of astronauts in space are undeniably related. Consequently, it is important to initiate close collaborations between orthopedic nutritionists and space experts, with the musculoskeletal-related dedications playing as common fuel.


Assuntos
Estado Nutricional , Ortopedia , Voo Espacial , Assistência ao Convalescente , Animais , Astronautas , Osso e Ossos , Cálcio , Bases de Dados Factuais , Dieta , Dieta Saudável , Suplementos Nutricionais , Alimentos , Gravitação , Humanos , Desnutrição , Nutrientes , Necessidades Nutricionais , Alta do Paciente , Sarcopenia , Vitamina D
13.
Aerosp Med Hum Perform ; 92(2): 65-74, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33468286

RESUMO

BACKGROUND: The impact of the spaceflight environment on endogenous estrogen production in female crewmembers and the resulting impact on other adaptations, like bone loss, is an under-investigated topic. Hence, we investigated the interaction of exogenous 17- estradiol (E2) treatment and disuse to test the hypothesis that E2 treatment would mitigate disuse-induced bone loss.METHODS: There were 40 virgin female Sprague-Dawley rats (5 mo old) randomized to placebo (PL; 0 ppm E2) or estrogen (E2; 10 ppm E2) treatments, delivered via custom-made rodent diets; half of each group was randomized to either weightbearing (WB) or hindlimb unloading (HU) for 39 d.RESULTS: We observed expected lower values after HU (615%) in volumetric BMD and cross-sectional areas at the proximal tibia metaphysis (PTM, by pQCT), 20% lower %BV/TV (nonsignificant) at the PTM, and 11% lower femoral neck maximal load; none of these HU-induced impacts were modified by E2. Impaired PTM periosteal expansion was observed in all E2-treated rats, with smaller (13 to 18%) cross-sectional areas. Midshaft tibial geometry was unaffected by E2 treatment, but large reductions (73 to 81%) in periosteal bone formation indices were observed in E2-treated rats.DISCUSSION: In summary, modest supplementation of exogenous E2 did not mitigate decrements in volumetric BMD, PTM cross-sectional geometry, or femoral neck strength observed with HU. However, numerous independent impacts of E2 treatment were observed, with significant suppression of periosteal bone formation indices. If maintained over time, this might impact negatively on cortical bone integrity during prolonged nonweightbearing.Mantri AV, Allaway HCM, Brezicha JE, Hogan HA, Bloomfield SA. Oral estradiol impact on mitigating unloading-induced bone loss in ovary-intact rats. Aerosp Med Hum Perform. 2021; 92(2):6574.


Assuntos
Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/prevenção & controle , Estradiol/administração & dosagem , Administração Oral , Animais , Feminino , Elevação dos Membros Posteriores , Ratos , Ratos Sprague-Dawley , Voo Espacial , Suporte de Carga
14.
Nutrients ; 14(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35011072

RESUMO

This scoping review aimed to identify current evidence and gaps in the field of long-term space nutrition. Specifically, the review targeted critical nutritional needs during long-term manned missions in outer space in addition to the essential components of a sustainable space nutrition system for meeting these needs. The search phrase "space food and the survival of astronauts in long-term missions" was used to collect the initial 5432 articles from seven Chinese and seven English databases. From these articles, two independent reviewers screened titles and abstracts to identify 218 articles for full-text reviews based on three themes and 18 keyword combinations as eligibility criteria. The results suggest that it is possible to address short-term adverse environmental factors and nutritional deficiencies by adopting effective dietary measures, selecting the right types of foods and supplements, and engaging in specific sustainable food production and eating practices. However, to support self-sufficiency during long-term space exploration, the most optimal and sustainable space nutrition systems are likely to be supported primarily by fresh food production, natural unprocessed foods as diets, nutrient recycling of food scraps and cultivation systems, and the establishment of closed-loop biospheres or landscape-based space habitats as long-term life support systems.


Assuntos
Astronautas , Fenômenos Fisiológicos da Nutrição/fisiologia , Voo Espacial , Dieta , Suplementos Nutricionais , Ingestão de Energia , Conservação de Alimentos , Abastecimento de Alimentos , Humanos , Desnutrição/prevenção & controle , Estado Nutricional , Voo Espacial/tendências , Desenvolvimento Sustentável , Ausência de Peso/efeitos adversos
15.
J Allergy Clin Immunol Pract ; 8(10): 3247-3250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32971311

RESUMO

NASA implements required medical tests and clinical monitoring to ensure the health and safety of its astronauts. These measures include a pre-launch quarantine to mitigate the risk of infectious diseases. During space missions, most astronauts experience perturbations to their immune system that manifest as a detectable secondary immunodeficiency. On return to Earth, after the stress of re-entry and landing, astronauts would be most vulnerable to infectious disease. In April 2020, a crew returned from International Space Station to NASA Johnson Space Center in Houston, Texas, during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Post-flight quarantine protocols (both crew and contacts) were enhanced to protect this crew from SARS-CoV-2. In addition, specific additional clinical monitoring was performed to determine post-flight immunocompetence. Given that coronavirus disease 2019 (COVID-19) prognosis is more severe for the immunocompromised, a countermeasures protocol for spaceflight suggested by an international team of scientists could benefit terrestrial patients with secondary immunodeficiency.


Assuntos
Astronautas , Infecções por Coronavirus/prevenção & controle , Hospedeiro Imunocomprometido/imunologia , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Quarentena/métodos , Voo Espacial , Estresse Fisiológico/imunologia , Betacoronavirus , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19 , Infecções por Coronavirus/imunologia , Suplementos Nutricionais , Terapia por Exercício , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Humanos , Imunoglobulina G/uso terapêutico , Interleucina-2/uso terapêutico , Política Organizacional , Pneumonia Viral/imunologia , Quarentena/organização & administração , SARS-CoV-2 , Astronave , Texas , Estados Unidos , United States National Aeronautics and Space Administration
16.
Nutr Res ; 82: 11-24, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32890860

RESUMO

Bed rest is necessary for many medical conditions but also used as a ground-based model for space flight (along with head-down tilt to simulate fluid shifts in microgravity). The purpose of this review is to examine nutritional interventions during bed rest and spaceflight for prevention of muscle and strength loss, glucose intolerance, bone resorption, and cardiovascular problems. Increased dietary protein intake and supplementation with amino acids, ß-hydroxy-ß-methylbutyrate, or cofactors with antioxidant properties are effective for ameliorating bed rest-induced loss of muscle mass and strength. Previous literature involving bed rest with dietary protein/amino acid supplementation had mixed findings, likely due to differences in dosage. Although high protein intake in some studies prevents bed rest-induced muscle loss, it also increases bone resorption. High calcium intake and vitamin D supplementation are not beneficial for preventing bone degradation during bed rest or spaceflight. Very few studies investigated countermeasures to prevent glucose intolerance and cardiovascular risks during bed rest/spaceflight. Low-glycemic index diets might be beneficial for the prevention of bed rest-induced glucose intolerance and cardiovascular problems. The present evidence warrants additional studies on the exact threshold of protein/amino acid intake to prevent the loss of muscle mass and strength during bed rest/spaceflight specifically to maintain the beneficial effects of proteins on muscle mass and function without increasing bone resorption. Furthermore, it is suggested to study the effects of vitamin K supplementation on bone health during bed rest/spaceflight and determine the role of long-term low-glycemic index diets on glucose regulation and cardiovascular health during extended bed rest.


Assuntos
Repouso em Cama , Dieta , Suplementos Nutricionais , Voo Espacial , Reabsorção Óssea/prevenção & controle , Doenças Cardiovasculares/prevenção & controle , Proteínas Alimentares/administração & dosagem , Intolerância à Glucose/prevenção & controle , Humanos , Força Muscular , Músculo Esquelético/anatomia & histologia
17.
Nutrients ; 12(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796546

RESUMO

Immune system dysregulation is among the many adverse effects incurred by astronauts during space flights. Omega-3 fatty acids, ß-alanine, and carnosine are among the many nutrients that contribute to immune system health. For space flight, crewmembers are prescribed a diet with a macronutrient composition of 55% carbohydrate, 30% fat, and 15% protein. To quantify omega-3 fatty acid, ß-alanine and carnosine intakes from such a diet, and to examine each nutrient's impact on exercise performance, 21 participants adhered to the aforementioned macronutrient ratio for 14 days which was immediately followed by a workout performed on gravity-independent resistive exercise hardware. Results included daily omega-3 fatty acid intakes below the suggested dietary intake. Daily omega-3 fatty acid, ß-alanine and carnosine intakes each correlated with non-significant amounts of variance from the workout's volume of work. Given the nutritional requirements to maintain immune system function and the demands of in-flight exercise countermeasures for missions of increasingly longer durations current results, in combination with previously published works, imply in-flight supplementation may be a prudent approach to help address the physiological and mental challenges incurred by astronauts on future space flights.


Assuntos
Deficiências Nutricionais/fisiopatologia , Dieta/efeitos adversos , Exercício Físico/fisiologia , Treinamento Resistido/métodos , Voo Espacial , Adulto , Astronautas , Carnosina/análise , Estudos Cross-Over , Deficiências Nutricionais/etiologia , Dieta/métodos , Inquéritos sobre Dietas , Ácidos Graxos Ômega-3/análise , Feminino , Humanos , Sistema Imunitário/efeitos dos fármacos , Masculino , Necessidades Nutricionais , Contramedidas de Ausência de Peso , Simulação de Ausência de Peso , beta-Alanina/análise
18.
J Bone Miner Res ; 35(10): 2049-2057, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32511780

RESUMO

Prolonged residence of mice in spaceflight is a scientifically robust and ethically ratified model of muscle atrophy caused by continued unloading. Under the Rodent Research Program of the National Aeronautics and Space Administration (NASA), we assayed the large-scale mRNA and metabolomic perturbations in the quadriceps of C57BL/6j male mice that lived in spaceflight (FLT) or on the ground (control or CTR) for approximately 4 weeks. The wet weights of the quadriceps were significantly reduced in FLT mice. Next-generation sequencing and untargeted mass spectroscopic assays interrogated the gene-metabolite landscape of the quadriceps. A majority of top-ranked differentially suppressed genes in FLT encoded proteins from the myosin or troponin families, suggesting sarcomere alterations in space. Significantly enriched gene-metabolite networks were found linked to sarcomeric integrity, immune fitness, and oxidative stress response; all inhibited in space as per in silico prediction. A significant loss of mitochondrial DNA copy numbers in FLT mice underlined the energy deprivation associated with spaceflight-induced stress. This hypothesis was reinforced by the transcriptomic sequencing-metabolomics integrative analysis that showed inhibited networks related to protein, lipid, and carbohydrate metabolism, and adenosine triphosphate (ATP) synthesis and hydrolysis. Finally, we discovered important upstream regulators, which could be targeted for next-generation therapeutic intervention for chronic disuse of the musculoskeletal system. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.


Assuntos
Atrofia Muscular , Músculo Quadríceps/patologia , Voo Espacial , Ausência de Peso , Animais , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro , Ausência de Peso/efeitos adversos
19.
PLoS One ; 15(6): e0234412, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32516346

RESUMO

A systematic review was performed to evaluate the effectiveness of nutrition as a standalone countermeasure to ameliorate the physiological adaptations of the musculoskeletal and cardiopulmonary systems associated with prolonged exposure to microgravity. A search strategy was developed to find all astronaut or human space flight bed rest simulation studies that compared individual nutritional countermeasures with non-intervention control groups. This systematic review followed the guidelines of the Cochrane Handbook for Systematic Reviews and tools created by the Aerospace Medicine Systematic Review Group for data extraction, quality assessment of studies and effect size. To ensure adequate reporting this systematic review followed the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analyses. A structured search was performed to screen for relevant articles. The initial search yielded 4031 studies of which 10 studies were eligible for final inclusion. Overall, the effect of nutritional countermeasure interventions on the investigated outcomes revealed that only one outcome was in favor of the intervention group, whereas six outcomes were in favor of the control group, and 43 outcomes showed no meaningful effect of nutritional countermeasure interventions at all. The main findings of this study were: (1) the heterogeneity of reported outcomes across studies, (2) the inconsistency of the methodology of the included studies (3) an absence of meaningful effects of standalone nutritional countermeasure interventions on musculoskeletal and cardiovascular outcomes, with a tendency towards detrimental effects on specific muscle outcomes associated with power in the lower extremities. This systematic review highlights the limited amount of studies investigating the effect of nutrition as a standalone countermeasure on operationally relevant outcome parameters. Therefore, based on the data available from the included studies in this systematic review, it cannot be expected that nutrition alone will be effective in maintaining musculoskeletal and cardiopulmonary integrity during space flight and bed rest.


Assuntos
Fenômenos Fisiológicos Musculoesqueléticos/efeitos dos fármacos , Terapia Nutricional/métodos , Ausência de Peso/efeitos adversos , Humanos , Voo Espacial
20.
Sci Rep ; 10(1): 6484, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32300161

RESUMO

Spaceflight is a unique environment that includes at least two factors which can negatively impact skeletal health: microgravity and ionizing radiation. We have previously shown that a diet supplemented with dried plum powder (DP) prevented radiation-induced bone loss in mice. In this study, we investigated the capacity of the DP diet to prevent bone loss in mice following exposure to simulated spaceflight, combining microgravity (by hindlimb unloading) and radiation exposure. The DP diet was effective at preventing most decrements in bone micro-architectural and mechanical properties due to hindlimb unloading alone and simulated spaceflight. Furthermore, we show that the DP diet can protect osteoprogenitors from impairments resulting from simulated microgravity. Based on our findings, a dietary supplementation with DP could be an effective countermeasure against the skeletal deficits observed in astronauts during spaceflight.


Assuntos
Doenças Ósseas Metabólicas/prevenção & controle , Radiação Cósmica/efeitos adversos , Elevação dos Membros Posteriores/efeitos adversos , Prunus domestica , Voo Espacial , Animais , Densidade Óssea/fisiologia , Densidade Óssea/efeitos da radiação , Doenças Ósseas Metabólicas/diagnóstico , Doenças Ósseas Metabólicas/etiologia , Doenças Ósseas Metabólicas/fisiopatologia , Modelos Animais de Doenças , Alimentos em Conserva , Elevação dos Membros Posteriores/fisiologia , Humanos , Masculino , Camundongos , Esqueleto/diagnóstico por imagem , Esqueleto/fisiopatologia , Esqueleto/efeitos da radiação , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA