Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Molecules ; 26(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578946

RESUMO

Euphorbia tirucalli is a medicine plant possessing many bioactive properties. This paper focused on phytochemical screening (alkaloid, flavonoid, saponin, tannin, and anthraquinone), quantification of polyphenol and flavonoids, and activating evaluation of antioxidants and antimicrobial properties against Xanthomonas axonopodis of different extracts from Euphorbia tirucalli grown in Binh Thuan, Vietnam. The best activity fraction was used for purification and determining bioactive ingredients. The results showed that the phytochemical study revealed the presence of alkaloids, flavonoids, tannins, and terpenoids in the ethyl acetate fraction. Saponin and anthraquinone did not present in all extracts. The content of polyphenol and flavonoid of Euphorbia tirucalli stem was in the range of 16.65-106.32 mg EqAG/g and 97.97-450.83 µg QE/g. The ethyl acetate fraction showed higher amounts of polyphenol and flavonoids and antimicrobial activity against X. axonopodis than other fractions. The antioxidant (SC50) activity of Euphorbia tirucalli stem was in the range of 12.91 ± 0.70 and 528.33 ± 25.15 µg/mL. At concentrations of 5.0 and 7.5 mg/mL, the diameter of inhibition of the ethyl acetate fraction was 14.33 ± 0.76 mm and 17.87 ± 0.57 mm, respectively. The MIC (minimum inhibitory concentration) was 0.156 mg/mL. Scopoletin, gallic acid, and piperic acid got MICs corresponding to 78, 312, and 312 µg/mL, respectively. Scopoletin, gallic acid, and piperic acid were found in the ethyl acetate fraction of Euphorbia tirucalli and exhibited the treatment of citrus bacteria canker and plant diseases.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Euphorbia/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Xanthomonas axonopodis/efeitos dos fármacos , Vietnã
2.
J Biotechnol ; 309: 20-28, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31863800

RESUMO

To meet the food demand of growing population, agricultural productivity needs to be increased by employing safe strategies without harming ecosystem. Silver nanoparticle (AgNP) using a green approach has become a promising substitute to the synthetic pesticides to overcome pest menace. In this study, AgNPs were synthesized from Solanum torvum fruit extract and their bactericidal property against phyto bacteria was shown. UV-vis spectroscopic observation revealed a surface resonance peak of 440 nm corresponding to the formation of AgNPs. Microscopic and particle-size analyses showed a nearly spherical size, with an average diameter of 27 nm. Surface charge and polydispersity index of the synthesized AgNPs were -11.8 mV and 0.29, respectively. Powder X-ray diffraction, energy-dispersive X-ray and Infrared spectroscopy techniques were used to explore phase formation, composition and possible biological molecules involved in AgNP formation. AgNPs exhibited minimum inhibitory concentrations of 6.25 µg mL-1 and 12.5 µg mL-1 against bacterial plant pathogens Xanthomonas axonopodis pv. punicae and Ralstonia solanacearum. In-vitro disk-diffusion assay showed inhibition zones of 11.4 ± 1 mm for R. solanacearum and 18.1 ± 1 mm for X. axonopodis pv. punicae treated with 50 µg mL-1 AgNPs. The AgNPs generated intracellular reactive oxygen species in the pathogens. DNA damage and DNA replication inhibition studies showed genotoxicity of AgNPs to the bacterial cells. A plant toxicity study demonstrated a nontoxic effect of the synthesized NPs. Overall; the results show that AgNPs can be used as an economically feasible, ecologically safe and effective approach to overcome bacterial diseases.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Ralstonia solanacearum/efeitos dos fármacos , Prata/química , Solanum/química , Xanthomonas axonopodis/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , DNA Bacteriano/análise , Frutas/química , Química Verde , Testes de Sensibilidade Microbiana , Microscopia Eletrônica , Tamanho da Partícula , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Difração de Raios X
3.
IEEE Trans Nanobioscience ; 18(4): 528-534, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31478866

RESUMO

Phytopathogenic bacteria affect a wide variety of crops, causing significant economic losses. Natural biocides are the alternative to chemical methods of phytopathogens control. The goal of the present study is the evaluation of the biocidal activity of the following: 1) the extract of orange wax (EOW); 2) zinc ferrite nanoparticles (ZF-NPs); 3) the EOW adsorbed on the ZF-NPs; and 4) the EOW/ZF-NPs washed with 40% ethanol. For the biocidal activity, three phytopathogenic bacteria were used, namely, Xanthomonas axonopodis pv. Vesicatoria (Xav) Erwinia amylovora (Ew), and Pseudomonas syringae pv. Phaseolicola (Psph). For the ZF-NPs, an inhibitory effect higher than 50% ( ) was observed for Xav respect to the antibiotic used as positive control. On the other hand, the ZF-NPs did not show inhibitory effects on both Ew and Psph. In addition, the EOW in dimethyl sulfoxide (DMSO) at 100% caused growth inhibition on Xav, bacteriostatic activity on Ew, and had not biological activity on Psph. To the best of our knowledge, the control of Xav by zinc ferrites and orange wax, and the bacteriostatic effect produced by orange wax extract on Ew have not been reported elsewhere. Orange wax and zinc ferrite nanoparticles show potential in control of phytopathogenic bacteria. However, the bactericidal effect depends on the bacterium, the concentration of treatments, and the method of preparation.


Assuntos
Antibacterianos/administração & dosagem , Citrus sinensis , Compostos Férricos/administração & dosagem , Nanopartículas/administração & dosagem , Extratos Vegetais/administração & dosagem , Zinco/administração & dosagem , Erwinia amylovora/efeitos dos fármacos , Erwinia amylovora/crescimento & desenvolvimento , Pseudomonas syringae/efeitos dos fármacos , Pseudomonas syringae/crescimento & desenvolvimento , Xanthomonas axonopodis/efeitos dos fármacos , Xanthomonas axonopodis/crescimento & desenvolvimento
4.
Int J Nanomedicine ; 10: 1977-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25792831

RESUMO

A rapid, green phytosynthesis of silver nanoparticles (AgNPs) using the aqueous extract of Helianthus tuberosus (sunroot tuber) was reported in this study. The morphology of the AgNPs was determined by transmission electron microscopy (TEM). Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) and X-ray powder diffraction (XRD) analysis confirmed the presence of AgNPs. Fourier transform infrared spectroscopy (FTIR) analysis revealed that biomolecules in the tuber extract were involved in the reduction and capping of AgNPs. The energy-dispersive spectroscopy (EDS) analysis of the AgNPs, using an energy range of 2-4 keV, confirmed the presence of elemental silver without any contamination. Further, the synthesized AgNPs were evaluated against phytopathogens such as Ralstonia solanacearum and Xanthomonas axonopodis. The AgNPs (1-4 mM) extensively reduced the growth rate of the phytopathogens. In addition, the cytotoxic effect of the synthesized AgNPs was analyzed using rat splenocytes. The cell viability was decreased according to the increasing concentration of AgNPs and 67% of cell death was observed at 100 µg/mL.


Assuntos
Antibacterianos , Helianthus/química , Nanopartículas Metálicas , Extratos Vegetais , Prata , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Ralstonia solanacearum/efeitos dos fármacos , Ratos , Prata/química , Prata/farmacologia , Prata/toxicidade , Baço/citologia , Xanthomonas axonopodis/efeitos dos fármacos
5.
J Plant Physiol ; 169(12): 1143-9, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22658220

RESUMO

Citrus canker caused by Xanthomonas axonopodis pv. citri (Xac) is a devastating bacterial disease threatening the citrus industry. Salicylic acid (SA) plays a key role in plant defense response to biotic stress, but information is scarce concerning the application of SA to enhancing Xac resistance. In the present research attempts were made to investigate how exogenous application of SA influenced canker disease outbreak in navel orange (Citrus sinensis). Exogenously applied SA at 0.25 mM significantly enhanced the endogenous free and bound SA, particularly the latter. Upon exposure to Xac, lower disease incidence rate and smaller lesion sites were observed in the samples pre-treated with SA, accompanied by repression of bacterial growth at the lesion sites. Concurrent with the augmented disease resistance, SA-treated leaves had higher H2O2 level and smaller stomata apertures before or after Xac infection when compared with their counterparts pre-treated with water (control). SA treatment elevated the activities of phenylalanine ammonia-lyase and ß-1,3-glucanase, but only the latter was higher in the SA-treated samples after Xac infection. In addition, mRNA levels of two pathogenesis-related genes, CsCHI and CsPR4A, were higher in the SA-treated samples relative to the control. Taken together, our results strongly suggest that the exogenously applied SA has evoked a cascade of physiological and molecular events that function singly or in concert to confer resistance to Xac invasion.


Assuntos
Citrus sinensis/metabolismo , Citrus sinensis/microbiologia , Resistência à Doença/efeitos dos fármacos , Doenças das Plantas/terapia , Ácido Salicílico/farmacologia , Xanthomonas axonopodis/efeitos dos fármacos , Xanthomonas axonopodis/patogenicidade , Anti-Infecciosos/farmacologia , Citrus sinensis/genética , Resistência à Doença/fisiologia , Genes de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Peróxido de Hidrogênio/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ácido Salicílico/metabolismo
6.
Peptides ; 33(1): 9-17, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22198367

RESUMO

We designed and prepared peptidotriazoles based on the antimicrobial peptide BP100 (LysLysLeuPheLysLysIleLeuLysTyrLeu-NH(2)) by introducing a triazole ring in the peptide backbone or onto the side chain of a selected residue. These compounds were screened for their in vitro growth inhibition of bacterial and fungal phytopathogens, and for their cytotoxic effects on eukaryotic cells and tobacco leaves. Their proteolytic susceptibility was also analyzed. The antibacterial activity and the hemolysis were influenced by the amino acid that was modified with the triazole as well as by the absence of presence of a substituent in this heterocyclic ring. We identified sequences active against the bacteria Xanthomonas axonopodis pv. vesicatoria, Erwinia amylovora, Pseudomonas syringae pv. syringae (MIC of 1.6-12.5 µM), and against the fungi Fusarium oxysporum (MIC<6.2-12.5 µM) with low hemolytic activity (0-23% at 50 µM), high stability to protease digestion and no phytotoxicity. These peptidotriazoles constitute good candidates to design new antimicrobial agents.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Antibacterianos/síntese química , Antifúngicos/síntese química , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Erwinia amylovora/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Oligopeptídeos/química , Pseudomonas syringae/efeitos dos fármacos , Técnicas de Síntese em Fase Sólida , Triazóis/química , Xanthomonas axonopodis/efeitos dos fármacos
7.
Appl Environ Microbiol ; 77(8): 2667-75, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21335383

RESUMO

A set of 31 undecapeptides, incorporating 1 to 11 d-amino acids and derived from the antimicrobial peptide BP100 (KKLFKKILKYL-NH(2)), was designed and synthesized. This set was evaluated for inhibition of growth of the plant-pathogenic bacteria Erwinia amylovora, Pseudomonas syringae pv. syringae, and Xanthomonas axonopodis pv. vesicatoria, hemolysis, and protease degradation. Two derivatives were as active as BP100, and 10 peptides displayed improved activity, with the all-d isomer being the most active. Twenty-six peptides were less hemolytic than BP100, and all peptides were more stable against protease degradation. Plant extracts inhibited the activity of BP100 as well as that of the d-isomers. Ten derivatives incorporating one d-amino acid each were tested in an infectivity inhibition assay with the three plant-pathogenic bacteria by using detached pear and pepper leaves and pear fruits. All 10 peptides studied were active against E. amylovora, 6 displayed activity against P. syringae pv. syringae, and 2 displayed activity against X. axonopodis pv. vesicatoria. Peptides BP143 (KKLFKKILKYL-NH(2)) and BP145 (KKLFKKILKYL-NH(2)), containing one d-amino acid at positions 4 and 2 (underlined), respectively, were evaluated in whole-plant assays for the control of bacterial blight of pepper and pear and fire blight of pear. Peptide BP143 was as effective as streptomycin in the three pathosystems, was more effective than BP100 against bacterial blight of pepper and pear, and equally effective against fire blight of pear.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Erwinia amylovora/efeitos dos fármacos , Pseudomonas syringae/efeitos dos fármacos , Pyrus/microbiologia , Xanthomonas axonopodis/efeitos dos fármacos , Aminoácidos/química , Antibacterianos/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Hemólise , Peptídeo Hidrolases/metabolismo , Doenças das Plantas/microbiologia , Estereoisomerismo
8.
FEMS Microbiol Lett ; 298(2): 143-8, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19624747

RESUMO

The most severe form of citrus canker disease is caused by Xanthomonas axonopodis pv. citri (Xac) and affects all types of important citrus crops, reducing fruit yield and quality. Copper-based products are routinely used as a standard control measure for citrus canker. In this work we demonstrate that copper treatment induces the viable but nonculturable (VBNC) state in Xac but does not prevent the development of symptoms in susceptible plants. Short-term exposures to different concentrations of copper solutions were assayed to determine which treatment resulted in Xac nonculturability. Treatment of 10(6) mL(-1) Xac cells for 10 min in a 135-muM CuSO(4) solution (equivalent to three times the free soluble copper concentration applied in one field treatment) resulted in nonculturability. However, 16% of cells were viable based on 5-cyano-2,3-ditolyl tetrazolium chloride staining and 1% were capable of producing canker lesions after infiltrating grapefruit plants. If induction of the VBNC state in Xac cells were to occur under field conditions, this would have to be taken into consideration for an effective control of canker disease.


Assuntos
Antibacterianos/farmacologia , Sulfato de Cobre/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Xanthomonas axonopodis/efeitos dos fármacos , Xanthomonas axonopodis/patogenicidade , Citrus paradisi/microbiologia , Doenças das Plantas/microbiologia , Virulência/efeitos dos fármacos
9.
Lett Appl Microbiol ; 49(2): 210-6, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19453949

RESUMO

AIMS: Xanthomonas axonopodis pv. dieffenbachiae causes anthurium blight, which is regarded as the most threatening disease for the anthurium industry worldwide. The bacterium is listed as a quarantine pathogen in several regions, including Europe. We evaluated the use of Neomycin-Cephalexin-Trimethoprime-pirMecillinam 4 (NCTM4) medium for its isolation. METHODS AND RESULTS: A total of 104 bacterial strains were inoculated onto NCTM4 and on the previously published Cellobiose-Starch (CS) and Esculin-Trehalose (ET) media. The strain collection included: the anthurium blight pathogen, Xanthomonas strains, for which false positive results are known to occur using serological identification-tests; other bacterial pathogens of anthurium; and representatives of bacteria that are commonly present in the anthurium phyllosphere. Media were evaluated following the ISO 16140 protocol for the validation of alternative methods. CONCLUSION: Growth of the anthurium blight pathogen was better on NCTM4 and ET media than on CS. NCTM4 provided a better repeatability. It also displayed a lower rate of false positive and false negative results when the pathogen was isolated from plant extracts. SIGNIFICANCE AND IMPACT OF THE STUDY: This study will lead to improved isolation protocols of the anthurium blight in official procedures. NCTM4 medium could also favourably be used in studies, which aim to further understanding of the biology and epidemiology of this pathogen.


Assuntos
Araceae/microbiologia , Meios de Cultura/química , Doenças das Plantas/microbiologia , Seleção Genética , Xanthomonas axonopodis/isolamento & purificação , Antibacterianos/farmacologia , Erros de Diagnóstico , Farmacorresistência Bacteriana , Europa (Continente) , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Xanthomonas axonopodis/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA