Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208026

RESUMO

In this study, the impact of different cell disruption techniques (high-pressure micro fluidization (HPMF), ionic liquids (ILs), multi-enzyme (ME), and hydrochloric acid (HCl)) on the chemical composition and biological activity of astaxanthin (AST) obtained from Haematococcus pluvialis was investigated. Results indicated that all cell disruption techniques had a significant effect on AST composition, which were confirmed by TLC and UPC2 analysis. AST recovery from HCl (HCl-AST) and ILs (ILs-AST) cell disruption techniques was dominant by free and monoesters AST, while AST recovery from HPMF (HPMF-AST) and ME (ME-AST) cell disruption techniques was composed of monoesters, diesters, and free AST. Further biological activity analysis displayed that HCl-AST showed the highest ABTS and DPPH activity, while ILs-AST showed better results against the ORAC assay. Additionally, ILs-AST exhibits a stronger anti-proliferation of HepG2 cells in a dose-dependent manner, which was ascribed to AST-induced ROS in to inhibit the proliferative of cancer cells.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Clorofíceas/química , Extratos Vegetais/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/isolamento & purificação , Antioxidantes/isolamento & purificação , Proliferação de Células , Células Hep G2 , Humanos , Líquidos Iônicos , Estrutura Molecular , Extratos Vegetais/farmacologia , Pressão , Xantofilas/isolamento & purificação , Xantofilas/farmacologia
2.
Mar Drugs ; 19(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068940

RESUMO

Carotenoids are used commercially for dietary supplements, cosmetics, and pharmaceuticals because of their antioxidant activity. In this study, colored microorganisms were isolated from deep sea sediment that had been collected from Suruga Bay, Shizuoka, Japan. One strain was found to be a pure yellow carotenoid producer, and the strain was identified as Sphingomonas sp. (Proteobacteria) by 16S rRNA gene sequence analysis; members of this genus are commonly isolated from air, the human body, and marine environments. The carotenoid was identified as nostoxanthin ((2,3,2',3')-ß,ß-carotene-2,3,2',3'-tetrol) by mass spectrometry (MS), MS/MS, and ultraviolet-visible absorption spectroscopy (UV-Vis). Nostoxanthin is a poly-hydroxy yellow carotenoid isolated from some photosynthetic bacteria, including some species of Cyanobacteria. The strain Sphingomonas sp. SG73 produced highly pure nostoxanthin of approximately 97% (area%) of the total carotenoid production, and the strain was halophilic and tolerant to 1.5-fold higher salt concentration as compared with seawater. When grown in 1.8% artificial sea salt, nostoxanthin production increased by 2.5-fold as compared with production without artificial sea salt. These results indicate that Sphingomonas sp. SG73 is an efficient producer of nostoxanthin, and the strain is ideal for carotenoid production using marine water because of its compatibility with sea salt.


Assuntos
Sedimentos Geológicos/microbiologia , Sphingomonas/isolamento & purificação , Sphingomonas/metabolismo , Xantofilas/isolamento & purificação , Xantofilas/metabolismo , Japão , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Sais/farmacologia , Água do Mar , Sphingomonas/genética , Espectrometria de Massas em Tandem , Xantofilas/análise , Xantofilas/química
3.
Mar Drugs ; 19(4)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801636

RESUMO

Algae are considered pigment-producing organisms. The function of these compounds in algae is to carry out photosynthesis. They have a great variety of pigments, which can be classified into three large groups: chlorophylls, carotenoids, and phycobilins. Within the carotenoids are xanthophylls. Xanthophylls (fucoxanthin, astaxanthin, lutein, zeaxanthin, and ß-cryptoxanthin) are a type of carotenoids with anti-tumor and anti-inflammatory activities, due to their chemical structure rich in double bonds that provides them with antioxidant properties. In this context, xanthophylls can protect other molecules from oxidative stress by turning off singlet oxygen damage through various mechanisms. Based on clinical studies, this review shows the available information concerning the bioactivity and biological effects of the main xanthophylls present in algae. In addition, the algae with the highest production rate of the different compounds of interest were studied. It was observed that fucoxanthin is obtained mainly from the brown seaweeds Laminaria japonica, Undaria pinnatifida, Hizikia fusiformis, Sargassum spp., and Fucus spp. The main sources of astaxanthin are the microalgae Haematococcus pluvialis, Chlorella zofingiensis, and Chlorococcum sp. Lutein and zeaxanthin are mainly found in algal species such as Scenedesmus spp., Chlorella spp., Rhodophyta spp., or Spirulina spp. However, the extraction and purification processes of xanthophylls from algae need to be standardized to facilitate their commercialization. Finally, we assessed factors that determine the bioavailability and bioaccesibility of these molecules. We also suggested techniques that increase xanthophyll's bioavailability.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Cianobactérias/metabolismo , Suplementos Nutricionais , Rodófitas/metabolismo , Alga Marinha/metabolismo , Estramenópilas/metabolismo , Xantofilas/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Humanos , Microalgas , Valor Nutritivo , Xantofilas/isolamento & purificação
4.
Int J Biol Macromol ; 171: 398-413, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33422516

RESUMO

Diatoms are ubiquitous, biologically widespread, and have global significance due to their unique silica cell wall composition and noteworthy applied aspects. Diatoms are being extensively exploited for environmental monitoring, reconstruction, and stratigraphic correlation. However, considering all the rich elements of diatoms biology, the current literature lacks sufficient information on the therapeutic attributes and applied aspects of biological macromolecules from diatoms, hampering added advances in all aspects of diatom biology. Diatoms offer numerous high-value compounds, such as fatty acids, polysaccharides, polypeptides, pigments, and polyphenols. Diatoms with a high content of PUFA's are targets of transformation into high-value products through microalgal technologies due to their wide application and growing market as nutraceuticals and food supplements. Diatoms are renewable biomaterial, which can be used to develop drug delivery systems due to biocompatibility, surface area, cost-effective ratio, and ease in surface modifications. Innovative approaches are needed to envisage cost-effective ways for the isolation of bioactive compounds, enhance productivity, and elucidate the detailed mechanism of action. This review spotlights the notable applications of diatoms and their biologically active constituents, such as fucoxanthin and omega 3 fatty acids, among others with unique structural and functional entities.


Assuntos
Diatomáceas/química , Substâncias Macromoleculares/uso terapêutico , Suplementos Nutricionais , Sistemas de Liberação de Medicamentos , Ácidos Graxos/isolamento & purificação , Ácidos Graxos/uso terapêutico , Humanos , Substâncias Macromoleculares/economia , Substâncias Macromoleculares/isolamento & purificação , Peptídeos/isolamento & purificação , Peptídeos/uso terapêutico , Polifenóis/isolamento & purificação , Polifenóis/uso terapêutico , Polissacarídeos/isolamento & purificação , Polissacarídeos/uso terapêutico , Substâncias Protetoras/uso terapêutico , Esteróis/isolamento & purificação , Esteróis/uso terapêutico , Xantofilas/isolamento & purificação , Xantofilas/uso terapêutico
5.
Sci Rep ; 11(1): 543, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436909

RESUMO

Pro-inflammatory cytokines such as IL-1ß, IL-6, and TNF-α are mediated by the activation of various kinds of signaling pathways in the innate immune system. Particularly, NF-κB and NLRP3 inflammasome signaling are involved in the production and secretion of these cytokines. Each signaling is participated in the two steps necessary for IL-1ß, a representative pro-inflammatory cytokine, to be processed into a form secreted by cells. In the priming step stimulated by LPS, pro-IL-1ß is synthesized through NF-κB activation. Pro-IL-1ß cleavages into mature IL-1ß by formed NLRP3 inflammasome in the activation step induced by ATP. The mature form of IL-1ß is subsequently secreted out of the cell, causing inflammation. Moreover, IL-6 and TNF-α are known to increase in NLRP3 inflammasome-mediated conditions. Here, we found that fucoxanthin, one of the major components of Phaeodactylum tricornutum, has an inhibitory effect on NF-κB and NLRP3 inflammasome activation induced by the combination of LPS and ATP in bone marrow-derived immune cells as well as astrocytes. Fucoxanthin, which is abundant in the EtOH fraction of Phaeodactylum tricornutum extracts, has shown to have less cell toxicity and found to decrease the production of major pro-inflammatory cytokines such as IL-1ß, IL-6, and TNF-α. Fucoxanthin has also shown to suppress the expression of cleaved caspase-1 and the oligomerization of ASC, which are the main components of the NLRP3 inflammasome. Furthermore, phosphorylated IκBα and pro-IL-1ß expression decreased in the presence of fucoxanthin, suggesting that fucoxanthin can negatively regulate the priming step of inflammasome signaling. Thus, our results provide reliable evidence that fucoxanthin may serve as a key candidate in the development of potential therapeutic agents for inflammatory diseases as well as neurodegenerative diseases caused by NF-κB and NLRP3 inflammasome activation.


Assuntos
Citocinas/metabolismo , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Microalgas/química , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Xantofilas/farmacologia , Astrócitos/imunologia , Astrócitos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Inflamação , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Terapia de Alvo Molecular , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Fitoterapia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Xantofilas/isolamento & purificação , Xantofilas/uso terapêutico
6.
Food Chem ; 339: 127818, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32854038

RESUMO

Native extracts from orange peels were obtained by a conventional method using acetone and, an alternative method using ionic liquid (1-butyl-3-methylimidazolium chloride ([C4mim]Cl)). The bioaccessibilities and cellular uptakes of carotenoids, esters and chlorophylls were evaluated, since the influence of esterification on bioaccessibility and bioavailability is not well established. For this, the extracts were emulsified, submitted to in vitro simulated digestion model according to the INFOGEST protocol, followed by uptake by Caco-2 cells. Compounds were separated, identified and quantified by HPLC-PDA-MS/MS. After digestion, 22.0% and 26.2% of the total carotenoids and 45.9% and 68.7% of the chlorophylls were bioaccessible from the acetone and [C4mim]Cl extracts, respectively. The bioaccessibilities of xanthophylls and carotenes were significantly higher than those of the mono- and diesters. The uptake by Caco-2 cells varied from 130.2 to 131.9 ng/mg cell protein for total carotenoids and from 243.8 to 234.2 ng/mg cell protein for chlorophylls in the acetone and [C4mim]Cl extracts, respectively. In general, xanthophylls and esters were better absorbed than carotenes.


Assuntos
Carotenoides/farmacocinética , Fracionamento Químico/métodos , Clorofila/farmacocinética , Citrus sinensis/química , Disponibilidade Biológica , Células CACO-2 , Carotenoides/análise , Carotenoides/isolamento & purificação , Clorofila/análise , Clorofila/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Digestão , Ésteres/farmacocinética , Frutas/química , Humanos , Líquidos Iônicos/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacocinética , Espectrometria de Massas em Tandem , Xantofilas/análise , Xantofilas/isolamento & purificação , Xantofilas/farmacocinética
7.
J Ethnopharmacol ; 265: 113302, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32860893

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Laminaria japonica, a brown seaweed, has been used in Traditional Chinese Medicine (TCM) to treat a variety of diseases including lung cancer. AIM OF THE STUDY: To demonstrate the effects of Fucoxanthin (FX), a major active component extracted from Laminaria japonica on metastasis and Gefitinib (Gef) sensitivity in human lung cancer cells both in vitro and in vivo. MATERIALS AND METHODS: Invasion and migration of lung cancer cells were detected using the wound healing assay and transwell assay. Epithelial-to-mesenchymal transition (EMT) factors and PI3K/AKT/NF-κB pathways were analyzed by western blotting. RNA interference (RNAi) technology was used to silence TIMP-2 gene expression in A549 cells. The anti-metastatic effect of FX was evaluated in vivo in an experimental lung metastatic tumor model. On the other hand, cell counting kit-8 assay was used to study the cell viability of human lung cancer PC9 cells and Gef resistant PC9 cells (PC9/G) after Gef, FX or FX combined with Gef treatment. PC9 xenograft model was established to explore the anti-tumor effect of FX or combined with Gef. Immunohistochemistry staining assay and immunofluorescence staining assay were used to reveal the effects of FX on lung cancer cell proliferation and apoptosis. RESULTS: FX was able to significantly inhibit lung cancer cells migration and invasion in vitro. FX suppressed the expressions of Snail, Twist, Fibronectin, N-cadherin, MMP-2, PI3K, p-AKT and NF-κB, and increased the expression of TIMP-2. Furthermore, knockdown of TIMP-2 attenuated FX-mediated invasion inhibition. Additionally, we demonstrated that FX inhibited lung cancer cells metastasis in vivo. The anti-metastatic effects of FX on lung cancer cells might be attributed to inhibition of EMT and PI3K/AKT/NF-κB pathway. We further demonstrated that the anti-tumor activity of FX was not only limited to the drug sensitive cell lines, but also prominent on lung cancer cells with Gef resistant phenotype. Furthermore, in vivo xenograft assay confirmed that FX inhibited tumor growth and enhanced the sensitivity of lung cancer cells to Gef and this effect may be due to inhibition of tumor cell proliferation and activation of apoptosis. CONCLUSION: Collectively, our findings suggested that FX suppresses metastasis of lung cancer cells and overcomes EGFR TKIs resistance. Thus, FX is worthy of further investigation as a drug candidate for the treatment of lung cancer.


Assuntos
Gefitinibe/farmacologia , Laminaria/química , Neoplasias Pulmonares/tratamento farmacológico , Xantofilas/farmacologia , Células A549 , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Gefitinibe/administração & dosagem , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica/prevenção & controle , Inibidor Tecidual de Metaloproteinase-2/genética , Xantofilas/administração & dosagem , Xantofilas/isolamento & purificação , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nutrients ; 12(5)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349358

RESUMO

Pyropia yezoensis, a red alga, is popular and harvested a lot in East Asia and is famous for its medicinal properties attributable to its bioactive compounds including amino acids (porphyra-334 and shinorine, etc.), polysaccharides, phytosterols, and pigments, but its anti-inflammatory effect and mechanism of anti-atopic dermatitis (AD) have not been elucidated. In this study, we investigate the anti-AD effect of P. yezoensis extract (PYE) on mRNA and protein levels of the pro-inflammatory chemokines, thymus, and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22), in human HaCaT keratinocyte cells treated to interferon (IFN)-γ or tumor necrosis factor (TNF)-α (10 ng/mL each). The effect of the PYE on extracellular signal-regulated kinase (ERK) and other mitogen-activated protein kinases (MAPKs) was related to its suppression of TARC and MDC production by blocking NF-κB activation in HaCaT cells. Furthermore, astaxanthin and xanthophyll from P. yezoensis were identified as anti-AD candidate compounds. These results suggest that the PYE may improve AD and contained two carotenoids by regulating pro-inflammatory chemokines.


Assuntos
Quimiocina CCL17/metabolismo , Quimiocina CCL22/metabolismo , Regulação para Baixo/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Interferon gama/efeitos adversos , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Porphyra/química , Fator de Necrose Tumoral alfa/efeitos adversos , Anti-Inflamatórios , Dermatite Atópica/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HaCaT , Humanos , Fitoterapia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Xantofilas/isolamento & purificação , Xantofilas/uso terapêutico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Biomed Pharmacother ; 125: 109992, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32084700

RESUMO

Oxidative stress is recognized as a common pathology that affects up to half of all men infertile. Fucoxanthin possesses antioxidant activity, and several investigators have reported anti-inflammatory action. This study extracted powder of Sargassum glaucescens by acetone to obtained fucoxanthin rich-brown algae extract (FXE). The objective of this study was to evaluate the ameliorative effects of fucoxanthin extract from Sargassum glaucescens on lipopolysaccharide-induced inflammation in RAW264.7 macrophage cells and its protective effects of against Cisplatin (CP)-induced reproductive damage in hamsters. Eighty male Syrian hamsters were injected with and without CP, then daily oral gavage with various concentrations of fucoxanthin for 5 days. Treatment with FXE reduced the level of reactive oxygen species and malondialdehyde in RAW 264.7 cells and the rats' testis as well as protective effects on mitochondrial membrane potential. The FXE administration also improved testosterone level and alpha-glucosidase activity. The sperm count also increased after treated with FXE, whereas sperm abnormality was reduced. Histopathological analysis showed that FXE successfully improved the seminiferous tubules morphology. According to these findings, fucoxanthin extract from Sargassum glaucescens can be used as an alternative for the treatment of testicular damage.


Assuntos
Produtos Biológicos/administração & dosagem , Cisplatino/farmacologia , Suplementos Nutricionais , Phaeophyceae/química , Testículo/efeitos dos fármacos , Testículo/metabolismo , Xantofilas/administração & dosagem , Animais , Antioxidantes/administração & dosagem , Produtos Biológicos/isolamento & purificação , Biomarcadores , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cricetinae , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/administração & dosagem , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Túbulos Seminíferos/metabolismo , Xantofilas/isolamento & purificação
10.
Mar Drugs ; 17(11)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689914

RESUMO

Astaxanthin (ASX) is a carotenoid of great interest due to its potential health benefits. However, its use in the food, feed, and pharmaceutical fields is limited due to low bioavailability, poor stability during thermochemical treatments, susceptibility to oxidation, and poor organoleptic characteristics. The aim of this work was to develop a method to stabilize astaxanthin extracted from the microalgae Haematococcus pluvialis (H.p.) and to improve its nutritional and functional properties through nanoencapsulation. Nanoparticles (NPs) were produced by emulsification-solvent evaporation technique starting from H.p. oleoresin using whey proteins concentrate (WPC) as stabilizer. The efficiency of encapsulation was 96%. The particle size (Z-average) was in the range of 80-130 nm and the superficial charge (measured as zeta-potential) was negative (-20 to -30 mV). The stability of the NPs upon resuspension in water was assayed through a panel of stress tests, i.e., extreme pH, UV radiation, Fe3+ exposition, and heating at 65 °C, that always showed a superior performance of encapsulated ASX in comparison to oleoresin, even if NPs tended to precipitate at pH 3.5-5.5. Simulated gastroenteric digestion was conducted to study the release of ASX in physiological conditions, and showed a maximum bioaccessibility of 76%, with 75% ASX converted into the more bioavailable free form. The collected data suggest that NPs might have possible future applications as supplements for human and animal diets.


Assuntos
Microalgas/metabolismo , Nanopartículas , Proteínas do Soro do Leite/química , Disponibilidade Biológica , Química Farmacêutica , Composição de Medicamentos , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Extratos Vegetais/química , Xantofilas/administração & dosagem , Xantofilas/química , Xantofilas/isolamento & purificação
11.
PLoS One ; 14(5): e0216755, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31107886

RESUMO

Astaxanthin is a highly potent antioxidant which can be extracted from Haematococcus pluvialis when cultivated and induced at high stress conditions. Due to astaxanthin's hydrophobicity, methoxypolyethylene glycol-polycaprolactone (mPEG-PCL) copolymer was synthesized to form polymeric micelles for the encapsulation of astaxanthin. Astaxanthin-loaded polymeric micelles were then used to examine the effects on the proliferation and differentiation of human mesenchymal stem cells (MSCs). Dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FT-IR) confirmed astaxanthin was encapsulated into mPEG-PCL micelles. Astaxanthin loading and encapsulation efficiency, determined by UV/Vis spectroscopy, were 3.27% and 96.67%, respectively. After 48 h, a total of 87.31% of astaxanthin was released from the polymeric micelles. The drug release profile was better fit by the Michaelis-Menten type model than the power law model. The MSC culture results showed that culture medium supplemented with 0.5 µg/mL astaxanthin-encapsulated polymeric micelles led to a 26.3% increase in MSC proliferation over an 8-day culture period. MSC differentiation results showed that 20 ng/mL astaxanthin-encapsulated polymeric micelles enhanced adipogenesis, chondrogenesis, and osteogenesis of MSCs by 52%, 106%, and 182%, respectively.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Antioxidantes/administração & dosagem , Antioxidantes/isolamento & purificação , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Micelas , Nanocápsulas/química , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Poliésteres , Polietilenoglicóis , Solubilidade , Xantofilas/administração & dosagem , Xantofilas/isolamento & purificação
12.
Mar Drugs ; 17(3)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823356

RESUMO

Marine drugs hold significantly more promise than their terrestrial counterparts, which could help to solve the current shortfall in treatments for osteoporosis and other bone related diseases. Fucoxanthin is the main carotenoid found in brown seaweed, and has many perceived health benefits, including potential bone therapeutic properties. This study assessed the osteogenic potential of pure fucoxanthin and crude extracts containing both fucoxanthin and phenolic fractions (also cited to have osteogenic potential) isolated from two intertidal species of brown seaweed, Laminaria digitata and Ascophyllum nodosum. In vitro studies were performed using a human foetal osteoblast cell line (hFOBs) and primary human bone marrow stromal cells (hBMSCs). The results found pure fucoxanthin inhibitory to cell proliferation in hFOBs at higher concentrations, whereas, the crude extracts containing both polyphenols and fucoxanthin showed the ability to scavenge free radicals, which masked this effect. None of the extracts tested showed strong pro-osteogenic effects in either cell type tested, failing to support previously reported positive effects.


Assuntos
Sequestradores de Radicais Livres/farmacologia , Osteogênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Alga Marinha/química , Xantofilas/farmacologia , Ascophyllum/química , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/isolamento & purificação , Humanos , Laminaria/química , Células-Tronco Mesenquimais , Osteoblastos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Cultura Primária de Células , Xantofilas/isolamento & purificação
13.
Food Res Int ; 119: 653-664, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30884700

RESUMO

Carotenoids constitute a large group of lipophilic pigments whose health-promoting benefits have been widely recognized. Hydroxy-containing carotenoids can be found in both free form or esterified with fatty acids in several plant matrices, but the native carotenoid profile is overall poorly explored due to the difficulty of analyzing carotenoid esters. One of the main natural sources of carotenoids is the marigold flower, which has been extensively used by the industry for the production of food colorants or supplements, both often manufactured with no saponification process. Although lutein esters are well established as the major compounds naturally found in marigold petals and their products, carotenoid esters other than the lutein ones have not been extensively examined. We carried out a comprehensive identification of carotenoids and carotenoid esters from marigold petals by LC-DAD-(APCI+)MS/MS. Whereas 18 carotenoids were identified in the saponified extract, 56 were identified when no saponification procedure was carried out: 6 free carotenoids, 20 monoesters and 30 diesters. This is the first time that esters of zeaxanthin, violaxanthin, auroxanthin, zeinoxanthin and ß-cryptoxanthin are identified in marigold. The structural information obtained through characteristic fragmentation patterns and diagnostic fragments in MS and MS/MS spectra (APCI+) sustained the differentiation between carotenoid esters with similar characteristics. Therefore, the separation of carotenoids by reversed-phase liquid chromatography using C30 columns in combination with DAD and APCI-MS/MS detection allowed high sensitivity and selectivity for carotenoid ester analysis.


Assuntos
Calendula/química , Carotenoides/química , Carotenoides/isolamento & purificação , Luteína/química , Luteína/isolamento & purificação , beta-Criptoxantina/isolamento & purificação , Criptoxantinas/isolamento & purificação , Ésteres/análise , Ésteres/isolamento & purificação , Ácidos Graxos , Flores/química , Espectrometria de Massas em Tandem , Xantina/isolamento & purificação , Xantofilas/isolamento & purificação , Zeaxantinas/isolamento & purificação
14.
J Agric Food Chem ; 67(8): 2212-2219, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30688446

RESUMO

Fucoxanthin, a natural carotenoid derived from algae, exhibits novel anticancer potential. However, fucoxanthin with high purity is hard to prepare, and the anticancer mechanism remains elusive. In the present study, fucoxanthin with high purity was prepared and purified from the marine microalgae Nitzschia sp. by silica-gel column chromatography (SGCC), and the underlying mechanism against human glioma cells was evaluated. The results showed that fucoxanthin time- and dose-dependently inhibited U251-human-glioma-cell growth by induction of apoptosis (64.4 ± 4.8, P < 0.01) accompanied by PARP cleavage and caspase activation (244 ± 14.2, P < 0.01). Mechanically, fucoxanthin time-dependently triggered reactive-oxygen-species (ROS)-mediated DNA damage (100 ± 7.38, P < 0.01), as evidenced by the phosphorylation activation of Ser1981-ATM, Ser428-ATR, Ser15-p53, and Ser139-histone. Moreover, fucoxanthin treatment also time-dependently caused dysfunction of MAPKs and PI3K-AKT pathways, as demonstrated by the phosphorylation activation of Thr183-JNK, Thr180-p38, and Thr202-ERK and the phosphorylation inactivation of Ser473-AKT. The addition of kinase inhibitors further confirmed the importance of MAPKs and PI3K-AKT pathways in fucoxanthin-induced cell-growth inhibition (32.5 ± 3.6, P < 0.01). However, ROS inhibition by the antioxidant glutathione (GSH) effectively inhibited fucoxanthin-induced DNA damage, attenuated the dysfunction of MAPKs and PI3K-AKT pathways, and eventually blocked fucoxanthin-induced cytotoxicity (54.3 ± 5.6, P < 0.05) and cell apoptosis (32.7 ± 2.5, P < 0.05), indicating that ROS production, an early apoptotic event, is involved in the fucoxanthin-mediated anticancer mechanism. Taken together, these results suggested that fucoxanthin induced U251-human-glioma-cell apoptosis by triggering ROS-mediated oxidative damage and dysfunction of MAPKs and PI3K-AKT pathways, which validated that fucoxanthin may be a candidate for potential applications in cancer chemotherapy and chemoprevention.


Assuntos
Apoptose/efeitos dos fármacos , Glioma/fisiopatologia , Microalgas/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Xantofilas/farmacologia , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Xantofilas/química , Xantofilas/isolamento & purificação
15.
Food Chem ; 279: 294-302, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30611493

RESUMO

The interest of food industry to merchandise natural astaxanthin is growing up. However, it confronts scientific and technological challenges mainly related to its poor water solubility and chemical instability. Here, we present a new quick and efficient green process to simultaneously extract, encapsulate and stabilize astaxanthin from Haematococcus pluvialis. The process is based on the hitherto unexplored combination of supramolecular solvents (SUPRAS), nanostructured liquids generated from amphiphiles through sequential self-assembly and coacervation, and nanostructured lipid carriers (NLCs). These novel nanosystems were characterized by means of dynamic light scattering, AFM and cryoSEM, revealing spherical particles of ∼100 nm. Their antioxidant activity was measured by ORAC (20.6 ±â€¯3.9 µM TE) and α-TEAC (2.92 ±â€¯0.58 µM α-TE) assays and their in vitro capacity to inhibit ROS by DHE probe. Results showed that the SUPRAS-NLCs proposed yield high extraction and encapsulation efficiencies (71 ±â€¯4%) in combination with a remarkable time stability (180 d, 4 °C).


Assuntos
Antioxidantes/química , Clorofíceas/química , Solventes/química , Antioxidantes/farmacologia , Microscopia Crioeletrônica , Suplementos Nutricionais , Portadores de Fármacos/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipídeos/química , Microscopia de Força Atômica , Nanoestruturas/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Xantofilas/química , Xantofilas/isolamento & purificação
16.
Artigo em Inglês | MEDLINE | ID: mdl-30173082

RESUMO

Lutein and zeaxanthin exhibit significant biological activities therefore their dietary intake through carotenoid-rich foods and supplements is strongly recommended as preventive approach. Hence their extraction from natural substrates targets to their commercial exploitation as nutraceuticals and ocular pharmaceuticals. Since carotenoids' bioavailability is higher in fat-containing substrates, egg yolk is considered an ideal food matrix. DOE-based optimization of novel high energy extraction practices achieves efficient recovery of xanthophylls from lipid sources. In this research, 23 full factorial and Box-Behnken designs (BBD) were applied for optimizing ultrasound- (UAE) and microwave-assisted extraction (MAE) variables (i.e. extraction solvent, temperature, time, US or MW power and solvent/material ratio). LC-MS/MS results pointed out the precedence of UAE in lutein and zeaxanthin extraction, where higher yields were obtained with 1:1 n-hexane-acetone as solvent mixture at 19 min, 600 W and 35 mL g-1. UAE carotenoid content was higher than MAE due to the different mechanisms laying behind the two processes and due to more complete granule rupture caused by higher US power. Evaluating the current results, DOE-based UAE analytical methodology stands out as an auspicious and sustainable alternative for commercial-based extraction of lipidic bioactive compounds for food and drug industrial applications.


Assuntos
Cromatografia Líquida/métodos , Gema de Ovo/química , Espectrometria de Massas em Tandem/métodos , Xantofilas/análise , Xantofilas/isolamento & purificação , Limite de Detecção , Modelos Lineares , Micro-Ondas , Reprodutibilidade dos Testes , Xantofilas/química
17.
J Oleo Sci ; 67(7): 863-869, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29877227

RESUMO

Generation of singlet oxygen by solar ultraviolet (UV) radiation causes acute inflammatory responses in the skin. Accumulation of singlet-oxygen-quenching antioxidants in the skin can suppress this photo-oxidative stress. This study evaluated the effect of dietary xanthophylls from red paprika fruit extract on UV-induced skin damage. A randomised double-blind placebo-controlled parallel group comparison study involving 46 healthy volunteers was performed. The minimal erythema dose (MED) of each individual was determined prior to the study. A capsule containing paprika xanthophylls (9 mg) or a placebo was administered daily for 5 weeks. The MED, minimal tanning dose (MTD), skin physiology parameters (skin color, hydration, and barrier function), and facial skin physiology parameters were evaluated at weeks 0, 2, and 4. The MED of the verum group at 2 and 4 weeks after administration was significantly higher than that of the placebo group. At 4 weeks, the suppression of UV-induced skin darkening by the verum diet was significantly greater than that of the placebo. There were no significant differences in facial skin parameters between the verum and placebo groups. Our results indicate the efficacy of dietary paprika xanthophylls in suppression of UV-induced skin damage.


Assuntos
Capsicum/química , Extratos Vegetais/administração & dosagem , Queimadura Solar/tratamento farmacológico , Raios Ultravioleta/efeitos adversos , Xantofilas/administração & dosagem , Xantofilas/química , Administração Oral , Adulto , Relação Dose-Resposta à Radiação , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Extratos Vegetais/isolamento & purificação , Queimadura Solar/prevenção & controle , Fatores de Tempo , Xantofilas/isolamento & purificação
18.
Food Chem Toxicol ; 107(Pt B): 620-629, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28389351

RESUMO

The present study investigated the angiotensin-I converting enzyme (ACE) inhibitory activity and the antioxidant properties, in vitro and in cured meat sausages containing reduced levels of sodium nitrite, of fucoxanthin extracted from the Tunisian brown seaweed Cystoseira barbata (CBFX). Results revealed that CBFX exhibited great scavenging activities against DPPH free radicals (EC50 = 136 µg/ml), peroxyl radicals in the linoleate-ß-carotene system (EC50 = 43 µg/ml) and hydroxyl radicals generated by Fenton reaction (DNA nicking assay). A considerable ferric reducing potential was also recorded for CBFX (EC50 = 34 µg/ml). It is interesting to note that CBFX was found to modulate the ACE activity, which is the key enzyme involved in the blood pressure regulation, with an EC50 of 5 µg/ml. When fucoxanthin was supplemented, the concentration of sodium nitrite added to cured turkey meat sausages was reduced from 150 to 80 ppm, coupled with the enhancement of colour and oxidative stabilities. Thus, CBFX, with noticeable antioxidant and antihyertensive effects, could be used as a natural additive in functional foods to alleviate potential human health hazards caused by carcinogenic nitrosamines formation.


Assuntos
Aditivos Alimentares/química , Produtos da Carne/análise , Phaeophyceae/química , Extratos Vegetais/análise , Nitrito de Sódio/análise , Xantofilas/análise , Animais , Anti-Hipertensivos/análise , Anti-Hipertensivos/isolamento & purificação , Antioxidantes/análise , Antioxidantes/isolamento & purificação , Cor , Armazenamento de Alimentos , Oxirredução , Extratos Vegetais/isolamento & purificação , Alga Marinha/química , Nitrito de Sódio/isolamento & purificação , Perus , Xantofilas/isolamento & purificação
19.
Mar Drugs ; 15(2)2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28212270

RESUMO

Lung cancer is the leading cause of cancer mortality worldwide and non-small-cell lung cancer (NSCLC) is the most common type. Marine plants provide rich resources for anticancer drug discovery. Fucoxanthin (FX), a Laminaria japonica extract, has attracted great research interest for its antitumor activities. Accumulating evidence suggests anti-proliferative effects of FX on many cancer cell lines including NSCLCs, but the detailed mechanisms remain unclear. In the present investigation, we confirmed molecular mechanisms and in vivo anti-lung cancer effect of FX at the first time. Flow cytometry, real-time PCR, western blotting and immunohistochemistry revealed that FX arrested cell cycle and induced apoptosis by modulating expression of p53, p21, Fas, PUMA, Bcl-2 and caspase-3/8. These results show that FX is a potent marine drug for human non-small-cell lung cancer treatment.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Laminaria/química , Neoplasias Pulmonares/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Xantofilas/uso terapêutico , Células A549 , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Supressoras de Tumor/metabolismo , Xantofilas/isolamento & purificação , Xantofilas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Mar Drugs ; 14(2)2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26861359

RESUMO

Astaxanthin is a naturally occurring red carotenoid pigment classified as a xanthophyll, found in microalgae and seafood such as salmon, trout, and shrimp. This review focuses on astaxanthin as a bioactive compound and outlines the evidence associated with its potential role in the prevention of atherosclerosis. Astaxanthin has a unique molecular structure that is responsible for its powerful antioxidant activities by quenching singlet oxygen and scavenging free radicals. Astaxanthin has been reported to inhibit low-density lipoprotein (LDL) oxidation and to increase high-density lipoprotein (HDL)-cholesterol and adiponectin levels in clinical studies. Accumulating evidence suggests that astaxanthin could exert preventive actions against atherosclerotic cardiovascular disease (CVD) via its potential to improve oxidative stress, inflammation, lipid metabolism, and glucose metabolism. In addition to identifying mechanisms of astaxanthin bioactivity by basic research, much more epidemiological and clinical evidence linking reduced CVD risk with dietary astaxanthin intake is needed.


Assuntos
Antioxidantes/farmacologia , Aterosclerose/prevenção & controle , Animais , Antioxidantes/administração & dosagem , Antioxidantes/isolamento & purificação , Aterosclerose/patologia , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/prevenção & controle , Carotenoides/administração & dosagem , Carotenoides/isolamento & purificação , Carotenoides/farmacologia , Suplementos Nutricionais , Humanos , Microalgas/química , Estresse Oxidativo/efeitos dos fármacos , Alimentos Marinhos/análise , Xantofilas/administração & dosagem , Xantofilas/isolamento & purificação , Xantofilas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA