Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Agric Food Chem ; 72(14): 8200-8213, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38560889

RESUMO

Zearalenone (ZEN) is a mycotoxin that is harmful to humans and animals. In this study, female and male rats were exposed to ZEN, and the results showed that ZEN reduced the farnesoid X receptor (FXR) expression levels in the liver and disrupted the enterohepatic circulation of bile acids (BAs). A decrease in food intake induced by ZEN was negatively correlated with an increase in the level of total BAs. BA-targeted metabolomics revealed that ZEN increased glycochenodeoxycholic acid levels and decreased the ratio of conjugated BAs to unconjugated BAs, which further increased the hypothalamic FXR expression levels. Preventing the increase in total BA levels induced by ZEN via Lactobacillus rhamnosus GG intervention restored the appetite. In conclusion, ZEN disrupted the enterohepatic circulation of BAs to decrease the level of food intake. This study reveals a possible mechanism by which ZEN affects food intake and provides a new approach to decrease the toxic effects of ZEN.


Assuntos
Ácidos e Sais Biliares , Zearalenona , Humanos , Ratos , Masculino , Feminino , Animais , Ácidos e Sais Biliares/metabolismo , Zearalenona/metabolismo , Fígado/metabolismo , Hipotálamo , Ingestão de Alimentos
2.
Arch Toxicol ; 96(12): 3385-3402, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35986755

RESUMO

Humans and animals are exposed to multiple substances in their food and feed that might have a negative health impact. Among these substances, the Fusarium mycoestrogen zearalenone (ZEN) and its metabolites α-zearalenol (α-ZEL) and α-zearalanol (α-ZAL) are known to possess endocrine disruptive properties. In a mixed diet or especially animal feed, these potential contaminants might be ingested together with naturally occurring phytoestrogens such as soy isoflavones. So far, risk assessment of potential endocrine disruptors is usually based on adverse effects of single compounds whereas studies investigating combinatorial effects are scarce. In the present study, we investigated the estrogenic potential of mycoestrogens and the isoflavones genistein (GEN), daidzein (DAI) and glycitein (GLY) as well as equol (EQ), the gut microbial metabolite of DAI, in vitro alone or in combination, using the alkaline phosphatase (ALP) assay in Ishikawa cells. In the case of mycoestrogens, the tested concentration range included 0.001 to 10 nM with multiplication steps of 10 in between, while for the isoflavones 1000 times higher concentrations were investigated. For the individual substances the following order of estrogenicity was obtained: α-ZEL > α-ZAL > ZEN > GEN > EQ > DAI > GLY. Most combinations of isoflavones with mycoestrogens enhanced the estrogenic response in the investigated concentrations. Especially lower concentrations of ZEN, α-ZEL and α-ZAL (0.001-0.01 nM) in combination with low concentrations of GEN, DAI and EQ (0.001-0.1 µM) strongly increased the estrogenic response compared to the single substances.


Assuntos
Disruptores Endócrinos , Isoflavonas , Zearalenona , Zeranol , Humanos , Animais , Zearalenona/toxicidade , Zearalenona/metabolismo , Equol , Fitoestrógenos/toxicidade , Genisteína/toxicidade , Disruptores Endócrinos/toxicidade , Fosfatase Alcalina , Estrona
3.
Shokuhin Eiseigaku Zasshi ; 63(3): 117-121, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-35858796

RESUMO

Fusarium species infect the major cereals consumed as food and feed, contaminating them with various toxic secondary metabolites known as toxins. Among these toxins, which include trichothecenes, zearalenone (ZEA), and fumonisins, the type-B trichothecene deoxynivalenol (DON) is generally considered as the most important. The present study evaluates an analytical method for the detection and quantification of multiple Fusarium toxins, namely, DON, acetyl forms of DON (3-Ac-DON and 15-Ac-DON), a glycoside form of DON (DON-3G), and other Fusarium toxins (nivalenol, an acetyl form of NIV (fusarenonX), T-2 and HT-2 toxins, diacetoxyscirpenol, and ZEA) in Job's tears and buckwheat.


Assuntos
Coix , Fagopyrum , Fusarium , Micotoxinas , Tricotecenos , Zearalenona , Grão Comestível/química , Contaminação de Alimentos/análise , Fusarium/metabolismo , Micotoxinas/análise , Micotoxinas/metabolismo , Micotoxinas/toxicidade , Tricotecenos/análise , Tricotecenos/metabolismo , Tricotecenos/toxicidade , Zearalenona/análise , Zearalenona/metabolismo , Zearalenona/toxicidade
4.
Toxins (Basel) ; 13(8)2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-34437454

RESUMO

The ingestion of mycotoxins can cause adverse health effects and represents a severe health risk to humans and livestock. Even though several acute and chronic effects have been described, the effect on the gut metaproteome is scarcely known. For that reason, we used metaproteomics to evaluate the effect of the mycotoxins deoxynivalenol (DON) and zearalenone (ZEN) on the gut microbiome of 15 weaned piglets. Animals were fed for 28 days with feed contaminated with different concentrations of DON (DONlow: 870 µg DON/kg feed, DONhigh: 2493 µg DON/kg feed) or ZEN (ZENlow: 679 µg ZEN/kg feed, ZENhigh: 1623 µg ZEN/kg feed). Animals in the control group received uncontaminated feed. The gut metaproteome composition in the high toxin groups shifted compared to the control and low mycotoxin groups, and it was also more similar among high toxin groups. These changes were accompanied by the increase in peptides belonging to Actinobacteria and a decrease in peptides belonging to Firmicutes. Additionally, DONhigh and ZENhigh increased the abundance of proteins associated with the ribosomes and pentose-phosphate pathways, while decreasing glycolysis and other carbohydrate metabolism pathways. Moreover, DONhigh and ZENhigh increased the abundance of the antioxidant enzyme thioredoxin-dependent peroxiredoxin. In summary, the ingestion of DON and ZEN altered the abundance of different proteins associated with microbial metabolism, genetic processing, and oxidative stress response, triggering a disruption in the gut microbiome structure.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Micotoxinas/metabolismo , Micotoxinas/toxicidade , Tricotecenos/metabolismo , Tricotecenos/toxicidade , Zearalenona/metabolismo , Zearalenona/toxicidade , Animais , Modelos Animais de Doenças , Feminino , Humanos , Proteômica , Suínos , Animais de Terapia , Desmame
5.
Toxins (Basel) ; 13(2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499402

RESUMO

The mycotoxin zearalenone (ZEN) is a frequent contaminant of animal feed and is well known for its estrogenic effects in animals. Cattle are considered less sensitive to ZEN than pigs. However, ZEN has previously been shown to be converted to the highly estrogenic metabolite α-zearalenol (α-ZEL) in rumen fluid in vitro. Here, we investigate the metabolism of ZEN in the reticulorumen of dairy cows. To this end, rumen-fistulated non-lactating Holstein Friesian cows (n = 4) received a one-time oral dose of ZEN (5 mg ZEN in 500 g concentrate feed) and the concentrations of ZEN and ZEN metabolites were measured in free rumen liquid from three reticulorumen locations (reticulum, ventral sac and dorsal mat layer) during a 34-h period. In all three locations, α-ZEL was the predominant ZEN metabolite and ß-zearalenol (ß-ZEL) was detected in lower concentrations. ZEN, α-ZEL and ß-ZEL were eliminated from the ventral sac and reticulum within 34 h, yet low concentrations of ZEN and α-ZEL were still detected in the dorsal mat 34 h after ZEN administration. In a second step, we investigated the efficacy of the enzyme zearalenone hydrolase ZenA (EC 3.1.1.-, commercial name ZENzyme®, BIOMIN Holding GmbH, Getzersdorf, Austria) to degrade ZEN to the non-estrogenic metabolite hydrolyzed zearalenone (HZEN) in the reticulorumen in vitro and in vivo. ZenA showed a high ZEN-degrading activity in rumen fluid in vitro. When ZenA was added to ZEN-contaminated concentrate fed to rumen-fistulated cows (n = 4), concentrations of ZEN, α-ZEL and ß-ZEL were significantly reduced in all three reticulorumen compartments compared to administration of ZEN-contaminated concentrate without ZenA. Upon ZenA administration, degradation products HZEN and decarboxylated HZEN were detected in the reticulorumen. In conclusion, endogenous metabolization of ZEN in the reticulorumen increases its estrogenic potency due to the formation of α-ZEL. Our results suggest that application of zearalenone hydrolase ZenA as a feed additive may be a promising strategy to counteract estrogenic effects of ZEN in cattle.


Assuntos
Suplementos Nutricionais , Hidrolases/administração & dosagem , Rúmen/enzimologia , Zearalenona/metabolismo , Ração Animal , Animais , Bovinos , Indústria de Laticínios , Feminino , Microbiologia de Alimentos , Hidrolases/metabolismo , Hidrólise , Inativação Metabólica , Cinética , Masculino , Zeranol/análogos & derivados , Zeranol/metabolismo
6.
Toxins (Basel) ; 12(8)2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32824220

RESUMO

Zearalenone (ZEN) and metabolites were measured in livers of turkeys and broilers fed a control diet free of mycotoxins, a diet that contained 0.5 mg/kg ZEN (ZEN diet), and a diet that contained 0.5, 5, and 20 mg/kg of ZEN, fumonisins, and deoxynivalenol, respectively (ZENDONFB diet). The feed was individually distributed to male Grade Maker turkeys from the 55th to the 70th day of age and to male Ross chickens from the 1st to the 35th day of age, without any signs of toxicity. Together, the free and conjugated forms of ZEN, α- and ß-zearalenols (ZOLs), zearalanone (ZAN), and α- and ß-zearalanols (ZALs) were measured by UHPLC-MS/MS with [13C18]-ZEN as an internal standard and immunoaffinity clean-up of samples. ZAN and ZALs were not detected. ZEN and ZOLs were mainly found in their conjugated forms. α-ZOL was the most abundant and was found at a mean concentration of 2.23 and 1.56 ng/g in turkeys and chickens, respectively. Consuming the ZENDONFB diet significantly increased the level of total metabolites in the livers of chickens. Furthermore, this increase was more pronounced for the free forms of α-ZOL than for the conjugated forms. An investigation of the presence of ZEN and metabolites in muscle with the methods validated for the liver failed to reveal any traces of these contaminants in this tissue. These results suggest that concomitant dietary exposure to deoxynivalenol (DON) and fumonisins (FB) may alter the metabolism and persistence of ZEN and its metabolites in the liver.


Assuntos
Ração Animal , Galinhas/metabolismo , Toxina T-2/metabolismo , Perus/metabolismo , Zearalenona/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Fumonisinas/metabolismo , Fígado/química , Fígado/metabolismo , Masculino , Toxina T-2/toxicidade , Espectrometria de Massas em Tandem , Tricotecenos/metabolismo , Tricotecenos/toxicidade , Zearalenona/toxicidade , Zeranol/análogos & derivados , Zeranol/metabolismo , Zeranol/toxicidade
7.
Toxins (Basel) ; 12(2)2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069863

RESUMO

The estrogen-like mycotoxin zearalenone (ZEN) is one of the most widely distributed contaminants especially in maize and its commodities, such as corn oil. ZEN degrading enzymes possess the potential for counteracting the negative effect of ZEN and its associated high safety risk in corn oil. Herein, we targeted enhancing the secretion of ZEN degrading enzyme by Pichia pastoris through constructing an expression plasmid containing three optimized expression cassettes of zlhy-6 codon and signal peptides. Further, we explored various parameters of enzymatic detoxification in neutralized oil and analyzed tocopherols and sterols losses in the corn oil. In addition, the distribution of degraded products was demonstrated as well by Agilent 6510 Quadrupole Time-of-Flight mass spectrometry. P. pastoris GSZ with the glucoamylase signal was observed with the highest ZLHY-6 secretion yield of 0.39 mg/mL. During the refining of corn oil, ZEN in the crude oil was reduced from 1257.3 to 13 µg/kg (3.69% residual) after neutralization and enzymatic detoxification. Compared with the neutralized oil, no significant difference in the total tocopherols and sterols contents was detected after enzymatic detoxification. Finally, the degraded products were found to be entirely eliminated by washing. This study presents an enzymatic strategy for efficient and safe ZEN removal with relatively low nutrient loss, which provides an important basis for further application of enzymatic ZEN elimination in the industrial process of corn oil production.


Assuntos
Biotecnologia/métodos , Óleo de Milho/química , Contaminação de Alimentos/análise , Saccharomycetales/enzimologia , Zearalenona/análise , Biocatálise , Óleo de Milho/análise , Contaminação de Alimentos/prevenção & controle , Expressão Gênica , Glucana 1,4-alfa-Glucosidase/genética , Glicosídeo Hidrolases/genética , Hidrólise , Plasmídeos , Saccharomycetales/genética , Zearalenona/metabolismo , beta-Frutofuranosidase/genética
8.
J Sci Food Agric ; 99(1): 482-485, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29808470

RESUMO

BACKGROUND: The aim of this study was to investigate whether the application of selenium (Se) ions directly to the leaf surface can protect plants against infection by the fungal toxin zearalenone (ZEA). The experiments were performed for the most common and agronomically important crops such as wheat, oat, and barley (both tolerant and sensitive varieties) because mycotoxin accumulation in plants is the cause of many diseases in animals and people. RESULTS: ZEA at a concentration of 10 µmol L-1 either alone or in combination with Se (5 µmol L-1 Na2 SeO4 ) was applied to the second leaf of seedlings. Visualization of leaf temperature profiles by infrared thermography demonstrated a decrease in temperature at the location of ZEA infection that was more noticeable in sensitive genotypes. The presence of Se significantly suppressed changes at the site of ZEA application in all tested plants, especially the tolerant genotypes. Microscopic observations confirmed that foliar administration of ZEA resulted in its penetration to deeper localized cells and that damage induced by ZEA (mainly to chloroplasts) decreased after Se application. Analyses of antioxidant enzymes demonstrated the involvement of Se in antioxidation mechanisms, in particular by activating SOD and CAT under ZEA-induced stress conditions. CONCLUSION: The foliar application of Se to seedling leaves may be a non-invasive method of protecting crops against the first steps of ZEA infection. © 2018 Society of Chemical Industry.


Assuntos
Avena/microbiologia , Hordeum/microbiologia , Folhas de Planta/efeitos dos fármacos , Selênio/farmacologia , Triticum/microbiologia , Zearalenona/análise , Avena/química , Avena/efeitos dos fármacos , Avena/genética , Produção Agrícola , Fungos/efeitos dos fármacos , Fungos/metabolismo , Genótipo , Hordeum/química , Hordeum/efeitos dos fármacos , Hordeum/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/microbiologia , Triticum/química , Triticum/efeitos dos fármacos , Triticum/genética , Zearalenona/metabolismo
9.
Toxicon ; 152: 84-94, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30055259

RESUMO

The aim of this study was to determine whether exposure to low doses of zearalenone (ZEN) induces changes in the serum biochemical profile and body weights (BW). Pre-pubertal gilts (with BW of up to 14.5 kg) were administered ZEN in daily doses of 5 µg/kg BW (group 1, n = 15), 10 µg/kg BW (group 2, n = 15), 15 µg/kg BW (group 3, n = 15) or placebo (control group C, n = 15) throughout the experiment. Blood was sampled for analysis on 10 dates (at five-day intervals). Minor but statistically significant differences in the analysed serum biochemical parameters (ALT, AST, ALP, total cholesterol, total bilirubin, glucose, total protein, iron, BUN and urea) were observed in the studied groups. The biochemical parameters of the analysed gilts indicate that the maintenance of homeostasis and biotransformation of ZEN require considerable energy expenditure. Beginning on the fourth analytical date, BW gains were consistently higher in the experimental groups than in group C. The observed decrease in glucose and total protein levels can probably be attributed to higher BW gains and the ongoing ZEN biotransformation processes in the enterocytes and the liver.


Assuntos
Peso Corporal/efeitos dos fármacos , Suínos/sangue , Zearalenona/toxicidade , Ração Animal/análise , Animais , Biotransformação , Dieta/veterinária , Feminino , Contaminação de Alimentos , Zearalenona/administração & dosagem , Zearalenona/metabolismo
10.
Int J Food Microbiol ; 251: 1-7, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28376398

RESUMO

A strategy to reduce the deleterious effects of mycotoxins is to use dietary supplements that contain microorganisms that bind mycotoxins and decrease their gastrointestinal absorption. Novel strains were isolated from a Kefir culture and assessed for their mycotoxin adsorption and biotransformation ability. The most active strains were identified using DNA sequencing, and the stability of microorganism/mycotoxin complexes was evaluated using buffer solutions to simulate the pH conditions in the gastrointestinal tract. Our results showed that the microorganism consortium of Kefir grains adsorbed 82 to 100% of aflatoxin B1 (AFB1), zearalenone (ZEA) and ochratoxin A (OTA) when cultivated in milk. The main strains that were capable of mycotoxin adsorption were identified as Lactobacillus kefiri, Kazachstania servazzii and Acetobacter syzygii. The strain L. kefiri KFLM3 was the most active, adsorbing 80 to 100% of the studied mycotoxins when cultivated in milk. Nonetheless, the strain K. servazzii KFGY7 retained more mycotoxin after the desorption experiments (65, 69 and 67% for AFB1, OTA and ZEA, respectively). These findings suggest that Kefir consumption may help to reduce gastrointestinal absorption of these mycotoxins and consequently reduce their toxic effects. The isolated strains may be of interest for the development of fermented dairy products for human consumption that have a new probiotic characteristic, the adsorption of mycotoxins.


Assuntos
Acetobacter/metabolismo , Aflatoxina B1/metabolismo , Doenças Transmitidas por Alimentos/prevenção & controle , Kefir/microbiologia , Lactobacillus/metabolismo , Ocratoxinas/metabolismo , Saccharomycetales/metabolismo , Zearalenona/metabolismo , Acetobacter/isolamento & purificação , Adsorção , Humanos , Lactobacillus/isolamento & purificação , Microbiota/fisiologia , Probióticos/metabolismo , Saccharomycetales/isolamento & purificação
11.
Org Biomol Chem ; 14(25): 5918-21, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27223265

RESUMO

The ATPase p97 is a ubiquitin targeted segregase that uses the energy of ATP binding and hydrolysis to extract ubiquitylated substrates from biological membranes, from other proteins, or from protein complexes to carry out myriad tasks in eukaryotes. Increased p97 activity has been linked to a poor prognosis in cancer patients, making p97 an anti-neoplastic target. In the present study, we show that dehydrocurvularin (DHC) and its chlorinated variants are covalent inhibitors of p97, interfering with its ATPase activity. Interestingly, cellular studies revealed both DHC and its monochloro analogue interfere with both the proteasome and p97, whereas its dichloro analogue showed p97 specificity.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Halogenação , Proteínas Nucleares/antagonistas & inibidores , Zearalenona/análogos & derivados , Adenosina Trifosfatases/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Proteínas Nucleares/metabolismo , Especificidade por Substrato , Zearalenona/química , Zearalenona/metabolismo , Zearalenona/farmacologia
12.
Mycotoxin Res ; 32(2): 99-116, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27021614

RESUMO

Seventy-two piglets (6.0 kg BW) were randomly distributed within six different dietary treatments to evaluate the effect of deoxynivalenol (DON) and the potential of four antioxidant feed additives in mitigating the adverse effects of DON on growth performances and oxidative status. Dietary treatments were as follows: control diet 0.8 mg/kg DON; contaminated diet (DON-contaminated diet) 3.1 mg/kg DON; and four contaminated diets, each supplemented with a different antioxidant feed additive, DON + vitamins, DON + organic selenium (Se)/glutathione (GSH), DON + quercetin, and DON + COMB (vitamins + Se/GSH + quercetin from the other treatments). Although DON was the main mycotoxin in the contaminated diet, this diet also contained 1.8 mg/kg of zearalenone (ZEN). The "mycotoxin" effects therefore included the combined effect of these two mycotoxins, DON, and ZEN. The DON-ZEN ingestion did not affect growth performances, average daily gain (ADG), average daily feed intake (ADFI), and feed efficiency (G:F ratio), but partially induced oxidative stress in weaned pigs as shown by increased malondialdehyde (MDA) content in the plasma and superoxide dismutase (SOD) activity in liver (P < 0.05). However, no change in the activity of other antioxidant enzymes or GSH concentrations was observed in plasma and liver of piglets fed the DON-contaminated diet (P > 0.05). Supplementation with individual antioxidant feed additive had a limited effect in weaned pigs fed DON-ZEN-contaminated diets. Combination of antioxidants (vitamins A, C, and E, quercetin, and organic Se/GSH) reduced plasma and liver MDA content and SOD activity in liver (P < 0.05) of piglets fed DON-ZEN-contaminated diets. Furthermore, this combination also reduced MDA content in the ileum (P < 0.05), although activity of glutathione peroxidases (GPx), SOD or catalase (CAT) in the ileum was not affected by DON-ZEN contamination or antioxidant supplements. In conclusion, DON-ZEN contamination induced oxidative stress in weaned pigs and combination of antioxidant feed additives restored partially the oxidative status. Further studies will be necessary to assess whether the effects of antioxidant feed additives on oxidative status are specific when feed is contaminated with DON-ZEN.


Assuntos
Ração Animal/análise , Antioxidantes/metabolismo , Aditivos Alimentares/metabolismo , Fusarium/metabolismo , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Micotoxinas/metabolismo , Suínos/metabolismo , Zea mays/microbiologia , Animais , Feminino , Masculino , Micotoxinas/análise , Micotoxinas/toxicidade , Suínos/sangue , Suínos/crescimento & desenvolvimento , Tricotecenos/análise , Tricotecenos/metabolismo , Tricotecenos/toxicidade , Desmame , Zea mays/efeitos adversos , Zea mays/química , Zearalenona/análise , Zearalenona/metabolismo , Zearalenona/toxicidade
13.
Nat Prod Commun ; 10(7): 1277-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26411029

RESUMO

(-)-(10E,15S)-10,11-Dehydrocurvularin (1), produced from an associated-fungus of Scolopendra subspinipes mutilans on a gram scale, was microbiologically converted to curvularin (2) and 5-methoxycurvularin (3) by Antrodiella semisupina in 61% totally isolated yield. The structures of these compounds were elucidated on the basis of spectroscopic and mass spectrometric analysis. The undescribed assignments of 1H and 13C NMR spectral data for 5-methoxycurvularin (2) has now been explicitly provided. The cytotoxic activities of compounds 1-3 against four human cancer cell lines were evaluated. Dehydrocurvularin (1) showed moderate cytotoxicity against Caski and Hep-G2, and curvularin (2) was selectively cytotoxic against MDA-MB-231.


Assuntos
Polyporales/metabolismo , Zearalenona/análogos & derivados , Biotransformação , Alcaloides Diterpenos , Ensaios de Seleção de Medicamentos Antitumorais , Medicamentos de Ervas Chinesas , Células Hep G2 , Humanos , Zearalenona/metabolismo
14.
J Agric Food Chem ; 61(46): 11212-21, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24164354

RESUMO

This study aims to investigate the effect of zearalenone supplementation on rat metabolism. Rats received biweekly intragastric administration of zearalenone mycotoxin (3 mg/kg body weight) for 2 weeks. Urine and plasma samples after zearalenone administration were analyzed by NMR-based metabolomics. Zearalenone exposure significantly elevated the plasma levels of glucose, lactate, N-acetyl glycoprotein, O-acetyl glycoprotein, and propionate but reduced the plasma levels of tyrosine, branched-chain amino acids, and choline metabolites. Zearalenone supplementation decreased the urine levels of butyrate, lactate, and nicotinate. However, it increased the urine levels of allantoin, choline, and N-methylnicotinamide at 0-8 h after the last zearalenone administration and those of 1-methylhistidine, acetoacetate, acetone, and indoxyl sulfate at 8-24 h after the last zearalenone administration. These results suggest that zearalenone exposure can cause oxidative stress and change common systemic metabolic processes, including cell membrane metabolism, protein biosynthesis, glycolysis, and gut microbiota metabolism.


Assuntos
Ratos/metabolismo , Zearalenona/toxicidade , Animais , Feminino , Espectroscopia de Ressonância Magnética , Metabolômica , Plasma/química , Ratos/genética , Ratos Sprague-Dawley , Urina/química , Zearalenona/metabolismo
15.
J Endocrinol ; 219(3): 243-50, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24050980

RESUMO

Plant-derived estrogens (phytoestrogens, PEs), like endogenous estrogens, affect a diverse array of tissues, including the bone, uterus, mammary gland, and components of the neural and cardiovascular systems. We hypothesized that PEs act directly at pituitary loci to attenuate basal FSH secretion and increase gonadotrope sensitivity to GnRH. To examine the effect of PEs on basal secretion and total production of FSH, ovine pituitary cells were incubated with PEs for 48 h. Conditioned media and cell extract were collected and assayed for FSH. Estradiol (E2) and some PEs significantly decreased basal secretion of FSH. The most potent PEs in this regard were coumestrol (CM), zearalenone (ZR), and genistein (GN). The specificity of PE-induced suppression of basal FSH was indicated by the absence of suppression in cells coincubated with PEs and an estrogen receptor (ER) blocker (ICI 182 780; ICI). Secretion of LH during stimulation by a GnRH agonist (GnRH-A) was used as a measure of gonadotrope responsiveness. Incubation of cells for 12 h with E2, CM, ZR, GN, or daidzein (DZ) enhanced the magnitude and sensitivity of LH secretion during subsequent exposure to graded levels of a GnRH-A. The E2- and PE-dependent augmentation of gonadotrope responsiveness was nearly fully blocked during coincubation with ICI. Collectively, these data demonstrate that selected PEs (CM, ZR, and GN), like E2, decrease basal secretion of FSH, reduce total FSH production, and enhance GnRH-A-induced LH secretion in a manner that is dependent on the ER.


Assuntos
Subunidade beta do Hormônio Folículoestimulante/metabolismo , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Gonadotrofos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Luteinizante Subunidade beta/metabolismo , Fitoestrógenos/metabolismo , Carneiro Doméstico/fisiologia , Ração Animal/análise , Animais , Células Cultivadas , Cumestrol/antagonistas & inibidores , Cumestrol/metabolismo , Regulação para Baixo/efeitos dos fármacos , Estradiol/química , Estradiol/metabolismo , Antagonistas de Estrogênios/farmacologia , Aditivos Alimentares/química , Aditivos Alimentares/metabolismo , Genisteína/antagonistas & inibidores , Genisteína/metabolismo , Subunidade alfa de Hormônios Glicoproteicos/biossíntese , Gonadotrofos/citologia , Gonadotrofos/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/agonistas , Hormônio Luteinizante Subunidade beta/biossíntese , Masculino , Fitoestrógenos/antagonistas & inibidores , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/metabolismo , Regulação para Cima/efeitos dos fármacos , Zearalenona/antagonistas & inibidores , Zearalenona/metabolismo
16.
Phytochem Anal ; 24(4): 357-66, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23401334

RESUMO

INTRODUCTION: Exposure to phytoestrogens and mycoestrogens has emerged as a public health issue due to their potentially endocrine disruption activities resulting from direct interaction with sex-steroid hormone receptors. There is a significant requirement for comprehensive, reproducible methods to determine the extent of estrogen mimicry by compounds encountered in the environment to estimate risk:benefit ratios, particularly in humans. OBJECTIVE: To develop a systematic approach for assessing recognition of chemically diverse compounds by human estrogen receptor proteins to aid in their assessment as endocrine disruptor compounds (EDCs). METHODS: Recombinant human estrogen receptor-α protein (rhERα) was expressed in Saccharomyces cervisiae as an ubiquitin fusion under control of a CUP1 promoter and partially purified with heparin affinity chromatography in the unliganded state. A novel radio-ligand binding array was developed to evaluate structurally diverse compounds, both naturally occurring and synthetic, for estrogen binding activity and affinity. RESULTS: Binding affinities of suspected estrogen mimics for rhERα were calculated over a range of [(3) H]estradiol-17ß concentrations using Lundon OneSite® and Compete® software. CONCLUSION: ß-zearalanol, a mycoestrogen similar to zearalenone used as an ICCVAM validation substance for the in vitro estrogen receptor binding assays (ICCAM report), was employed as a model estrogen mimic to illustrate the approach, methods and calculations using these techniques.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Técnicas de Sonda Molecular , Fitoestrógenos/análise , Titulometria/métodos , Ligação Competitiva , Disruptores Endócrinos , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Concentração Inibidora 50 , Ligantes , Modelos Teóricos , Mimetismo Molecular , Fitoestrógenos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Zearalenona/análise , Zearalenona/metabolismo
17.
Int J Clin Pract ; 66(1): 28-36, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22145580

RESUMO

Zearalenone (ZEN) is a non-steroidal mycoestrogen that widely contaminates agricultural products. ZEN and its derivatives share similar molecular mechanisms and activity with estrogens and interact with ERα and ERß leading to changes in the reproductive system in both animals and humans. The reduced form of ZEN, α-ZEA ralenol, has been used as an anabolic agent for animals and also proposed as hormonal replacement therapy in postmenopausal women. Furthermore, both zearelanol ZEN and derivatives have been patented as oral contraceptives. ZEN has been widely used in the United States since 1969 to improve fattening rates in cattle by increasing growth rate and feed conversion efficiency. Evidence of human harm from this practice is provided by observations of central precocious puberty. As a result, this practice has been banned by the European Union. As ZEN has been associated with breast enlargement in humans, it has been included in many bust-enhancing dietary supplements but epidemiological evidence is lacking with regard to breast cancer risk. Extensive work with human breast cancer cell lines has shown estrogenic stimulation in those possessing ER but a reduction in DMBA-induced breast cancers in rodents given ZEN. Protein disulfide isomerase provides a molecular biomarker of dietary exposure to ZEN and its derivatives allowing the detection and control of harmful food intake. The interaction of ZEN with anti-estrogens, anticancer agents and antioxidants requires further investigation.


Assuntos
Neoplasias da Mama/induzido quimicamente , Estrogênios não Esteroides/efeitos adversos , Zearalenona/efeitos adversos , Animais , Anticarcinógenos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/prevenção & controle , Bovinos , Linhagem Celular Tumoral , Dieta/efeitos adversos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estrogênios não Esteroides/metabolismo , Feminino , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Substâncias de Crescimento/farmacologia , Terapia de Reposição Hormonal , Humanos , Inativação Metabólica/fisiologia , Puberdade Precoce/induzido quimicamente , Receptores de Estrogênio/efeitos dos fármacos , Zearalenona/metabolismo , Zeranol/efeitos adversos , Zeranol/metabolismo
18.
Food Addit Contam ; 23(6): 556-68, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16766455

RESUMO

Previously we described the construction and properties of a rapid yeast bioassay stably expressing human estrogen receptor alpha (hERalpha) and yeast enhanced green fluorescent protein (yEGFP), the latter in response to estrogens. In the present study this yeast estrogen assay was validated as a qualitative screening method for the determination of estrogenic activity in animal feed. This validation was performed according to EC Decision 2002/657. Twenty blank animal feed samples, including milk replacers and wet and dry feed samples, were spiked with 17beta-estradiol (E2beta) at 5 ng g(-1), 17alpha-ethynylestradiol (EE2) at 5 ng g(-1), diethylstilbestrol (DES) at 10 ng g(-1), zearalenone at 1.25 microg g(-1) or equal at 200 microg g(-1). All of these blank and low estrogen spiked feed samples fulfilled the CCalpha and CCbeta criterions, meaning that all 20 blank feed samples gave a signal below the determined decision limit CCalpha and were thus classified as compliant, and at least 19 out of the 20 spiked samples gave a signal above this CCalpha (beta = 5%) and were thus classified as suspect. The method was specific and estrogens in feed were stable for up to 98 days. In this study we also present long-term performance data and several examples of estrogens found in the routine screening of animal feed. This is the first successful example of a developed, validated and applied bioassay for the screening of hormonal substances in feed.


Assuntos
Ração Animal/análise , Bioensaio/métodos , Estrogênios/análise , Contaminação de Alimentos/análise , Animais , Dietilestilbestrol/análise , Dietilestilbestrol/metabolismo , Estabilidade de Medicamentos , Equol , Estradiol/análise , Estradiol/metabolismo , Estrogênios/metabolismo , Estrogênios não Esteroides/análise , Estrogênios não Esteroides/metabolismo , Etinilestradiol/análise , Isoflavonas/análise , Isoflavonas/metabolismo , Fitoestrógenos/análise , Fitoestrógenos/metabolismo , Leveduras/metabolismo , Zearalenona/análise , Zearalenona/metabolismo
19.
Exp Biol Med (Maywood) ; 229(6): 560-8, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15169976

RESUMO

The estrogenic activity of ginseng has been the subject of conflicting reports. Cell proliferation, induction of estrogen-responsive genes, and isolated cases of adverse reactions such as postmenopausal vaginal bleeding and gynecomastia have been reported after ginseng treatment. Other studies report antiproliferative effects with no induction of estrogen-responsive genes. We developed estrogen receptor (ER) alpha and ER alpha competitive binding assays using recombinant receptors and [(3)H]-17 alpha-estradiol to detect phytoestrogens in extracts of Asian ginseng root (Panax ginseng C. A. Meyer) and American ginseng root (Panax quinquefolius L.). Root extracts contained substances that bound both receptor isoforms. These substances had a two to three times greater affinity for ER alpha. Significantly higher binding was found in methanol extracts than in hot water extracts. Subsequent analysis of the extracts revealed significant ER binding attributable to zearalenone, the estrogenic mycotoxin produced by several Fusarium species. The ER showed no binding affinity for Rb1 and Rg1, the major ginsenosides found in P. quinquefolius and P. ginseng, respectively. Thus, ginseng extraction methods, plant species tested, and mycotoxin contaminants may help to explain the disparate literature reports. The prevalence and health significance of fungal contamination in herbal products used for medicinal purposes should be further investigated.


Assuntos
Micotoxinas/metabolismo , Panax/química , Receptores de Estrogênio/metabolismo , Ligação Competitiva , Cromatografia Líquida de Alta Pressão , Ensaio de Imunoadsorção Enzimática , Estradiol/química , Estradiol/metabolismo , Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Estrogênios não Esteroides/química , Estrogênios não Esteroides/metabolismo , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Ginsenosídeos/química , Ginsenosídeos/metabolismo , Humanos , Micotoxinas/química , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Raízes de Plantas/química , Plantas Medicinais/química , Receptores de Estrogênio/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Zearalenona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA