Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 9(46): eadi5326, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976360

RESUMO

Energy deprivation triggers food seeking to ensure homeostatic consumption, but the neural coding of motivational vigor in food seeking during physical hunger remains unknown. Here, we report that ablation of dopamine (DA) neurons in zona incerta (ZI) but not ventral tegmental area potently impaired food seeking after fasting. ZI DA neurons and their projections to paraventricular thalamus (PVT) were quickly activated for food approach but inhibited during food consumption. Chemogenetic manipulation of ZI DA neurons bidirectionally regulated feeding motivation to control meal frequency but not meal size for food intake. Activation of ZI DA neurons promoted, but silencing of these neurons blocked, contextual memory associate with food reward. In addition, selective activation of ZI DA projections to PVT promoted food seeking for food consumption and transited positive-valence signals. Together, these findings reveal that ZI DA neurons encode motivational vigor in food seeking for food consumption through their projections to PVT.


Assuntos
Zona Incerta , Zona Incerta/fisiologia , Neurônios Dopaminérgicos , Motivação , Tálamo/fisiologia , Área Tegmentar Ventral/fisiologia
2.
Sci China Life Sci ; 65(3): 466-499, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34985643

RESUMO

All animals possess a plethora of innate behaviors that do not require extensive learning and are fundamental for their survival and propagation. With the advent of newly-developed techniques such as viral tracing and optogenetic and chemogenetic tools, recent studies are gradually unraveling neural circuits underlying different innate behaviors. Here, we summarize current development in our understanding of the neural circuits controlling predation, feeding, male-typical mating, and urination, highlighting the role of genetically defined neurons and their connections in sensory triggering, sensory to motor/motivation transformation, motor/motivation encoding during these different behaviors. Along the way, we discuss possible mechanisms underlying binge-eating disorder and the pro-social effects of the neuropeptide oxytocin, elucidating the clinical relevance of studying neural circuits underlying essential innate functions. Finally, we discuss some exciting brain structures recurrently appearing in the regulation of different behaviors, which suggests both divergence and convergence in the neural encoding of specific innate behaviors. Going forward, we emphasize the importance of multi-angle and cross-species dissections in delineating neural circuits that control innate behaviors.


Assuntos
Comportamento Animal , Vias Neurais/fisiologia , Animais , Bulimia , Hipotálamo/fisiologia , Ocitocina/farmacologia , Comportamento Predatório/fisiologia , Comportamento Sexual Animal/fisiologia , Comportamento Social , Vias Visuais/fisiologia , Zona Incerta/fisiologia
3.
Neuron ; 104(6): 1153-1167.e4, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31668484

RESUMO

Anatomical and behavioral data suggest that the ventrolateral orbitofrontal cortex (VLO), which exhibits extensive connectivity and supports diverse sensory and cognitive processes, may exert global influence over brain activity. However, this hypothesis has never been tested directly. We applied optogenetic fMRI to drive various elements of VLO circuitry while visualizing the whole-brain response. Surprisingly, driving excitatory thalamocortical projections to VLO at low frequencies (5-10 Hz) evoked widespread, bilateral decreases in brain activity spanning multiple cortical and subcortical structures. This pattern was unique to thalamocortical projections, with direct stimulations of neither VLO nor thalamus eliciting such a response. High-frequency stimulations (25-40 Hz) of thalamocortical projections evoked dramatically different-though still far-reaching-responses, in the form of widespread ipsilateral activation. Importantly, decreases in brain activity evoked by low-frequency thalamocortical input were mediated by GABA and activity in zona incerta. These findings identify specific circuit mechanisms underlying VLO control of brain-wide neural activities.


Assuntos
Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Tálamo/fisiologia , Zona Incerta/fisiologia , Animais , Encéfalo/fisiologia , Feminino , Imageamento por Ressonância Magnética , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/metabolismo
4.
Science ; 356(6340): 853-859, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28546212

RESUMO

The neuronal substrate for binge eating, which can at times lead to obesity, is not clear. We find that optogenetic stimulation of mouse zona incerta (ZI) γ-aminobutyric acid (GABA) neurons or their axonal projections to paraventricular thalamus (PVT) excitatory neurons immediately (in 2 to 3 seconds) evoked binge-like eating. Minimal intermittent stimulation led to body weight gain; ZI GABA neuron ablation reduced weight. ZI stimulation generated 35% of normal 24-hour food intake in just 10 minutes. The ZI cells were excited by food deprivation and the gut hunger signal ghrelin. In contrast, stimulation of excitatory axons from the parasubthalamic nucleus to PVT or direct stimulation of PVT glutamate neurons reduced food intake. These data suggest an unexpected robust orexigenic potential for the ZI GABA neurons.


Assuntos
Bulimia/fisiopatologia , Neurônios GABAérgicos/fisiologia , Aumento de Peso/fisiologia , Zona Incerta/citologia , Zona Incerta/fisiologia , Animais , Axônios/metabolismo , Dieta Hiperlipídica , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Privação de Alimentos , Preferências Alimentares/fisiologia , Grelina/metabolismo , Ácido Glutâmico/metabolismo , Fome/fisiologia , Camundongos , Optogenética , Filosofia , Densidade Pós-Sináptica/metabolismo , Terminações Pré-Sinápticas/metabolismo , Tálamo/citologia , Tálamo/fisiologia
5.
PLoS Biol ; 13(9): e1002253, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26393890

RESUMO

Active sensing involves the fusion of internally generated motor events with external sensation. For rodents, active somatosensation includes scanning the immediate environment with the mystacial vibrissae. In doing so, the vibrissae may touch an object at any angle in the whisk cycle. The representation of touch and vibrissa self-motion may in principle be encoded along separate pathways, or share a single pathway, from the periphery to cortex. Past studies established that the spike rates in neurons along the lemniscal pathway from receptors to cortex, which includes the principal trigeminal and ventral-posterior-medial thalamic nuclei, are substantially modulated by touch. In contrast, spike rates along the paralemniscal pathway, which includes the rostral spinal trigeminal interpolaris, posteromedial thalamic, and ventral zona incerta nuclei, are only weakly modulated by touch. Here we find that neurons along the lemniscal pathway robustly encode rhythmic whisking on a cycle-by-cycle basis, while encoding along the paralemniscal pathway is relatively poor. Thus, the representations of both touch and self-motion share one pathway. In fact, some individual neurons carry both signals, so that upstream neurons with a supralinear gain function could, in principle, demodulate these signals to recover the known decoding of touch as a function of vibrissa position in the whisk cycle.


Assuntos
Tálamo/fisiologia , Tato/fisiologia , Núcleos do Trigêmeo/fisiologia , Vibrissas/fisiologia , Zona Incerta/fisiologia , Animais , Feminino , Mecanorreceptores/fisiologia , Propriocepção , Ratos Long-Evans
6.
J Neurosci ; 35(25): 9463-76, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26109669

RESUMO

There is uncertainty concerning the circuit connections by which the superior colliculus interacts with the basal ganglia. To address this issue, anterograde and retrograde tracers were placed, respectively, into the superior colliculus and globus pallidus of Sprague-Dawley rats. In this two-tracer experiment, the projections from the superior colliculus terminated densely in the ventral zona incerta (ZIv), but did not overlap the labeled neurons observed in the subthalamic nucleus. In cases in which anterograde and retrograde tracers were placed, respectively, in sensory-responsive sites in the superior colliculus and posteromedial (POm) thalamus, the labeled projections from superior colliculus innervated the ZIv regions that contained the labeled neurons that project to POm. We also confirmed this colliculo-incertal-POm pathway by depositing a mixture of retrograde and anterograde tracers at focal sites in ZIv to reveal retrogradely labeled neurons in superior colliculus and anterogradely labeled terminals in POm. When combined with retrograde tracer injections in POm, immunohistochemical processing proved that most ZIv projections to POm are GABAergic. Consistent with these findings, direct stimulation of superior colliculus evoked neuronal excitation in ZIv and caused inhibition of spontaneous activity in POm. Collectively, these results indicate that superior colliculus can activate the inhibitory projections from ZIv to the POm. This is significant because it suggests that the superior colliculus could suppress the interactions between POm and the dorsolateral striatum, presumably to halt ongoing behaviors so that more adaptive motor actions are selected in response to unexpected sensory events. SIGNIFICANCE STATEMENT: By demonstrating that the zona incerta regulates communication between the superior colliculus and the posteromedial thalamus, we have uncovered a circuit that partly explains the behavioral changes that occur in response to unexpected sensory stimuli. Furthermore, this circuit could explain why deep brain stimulation of the zona incerta is beneficial to patients who suffer from Parkinson's disease.


Assuntos
Vias Neurais/anatomia & histologia , Colículos Superiores/anatomia & histologia , Tálamo/anatomia & histologia , Zona Incerta/anatomia & histologia , Animais , Eletrofisiologia , Processamento de Imagem Assistida por Computador , Masculino , Microscopia de Fluorescência , Vias Neurais/fisiologia , Ratos , Ratos Sprague-Dawley , Colículos Superiores/fisiologia , Tálamo/fisiologia , Zona Incerta/fisiologia
7.
J Neurophysiol ; 112(10): 2580-96, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25143541

RESUMO

The posterior thalamic nucleus (PO) is a higher order nucleus heavily implicated in the processing of somatosensory information. We have previously shown in rodent models that activity in PO is tightly regulated by inhibitory inputs from a GABAergic nucleus known as the zona incerta (ZI). The level of incertal inhibition varies under both physiological and pathological conditions, leading to concomitant changes in PO activity. These changes are causally linked to variety of phenomena from altered sensory perception to pathological pain. ZI regulation of PO is mediated by GABAA and GABAB receptors (GABAAR and GABABR) that differ in their binding kinetics and their electrophysiological properties, suggesting that each may have distinct roles in incerto-thalamic regulation. We developed a computational model to test this hypothesis. We created a two-cell Hodgkin-Huxley model representing PO and ZI with kinetically realistic GABAAR- and GABABR-mediated synapses. We simulated spontaneous and evoked firing in PO and observed how these activities were affected by inhibition mediated by each receptor type. Our model predicts that spontaneous PO activity is preferentially regulated by GABABR-mediated mechanisms, while evoked activity is preferentially regulated by GABAAR. Our model also predicts that modulation of ZI firing rate and synaptic GABA concentrations is an effective means to regulate the incerto-thalamic circuit. The coupling of distinct functions to GABAAR and GABABR presents an opportunity for the development of therapeutics, as particular aspects of incerto-thalamic regulation can be targeted by manipulating the corresponding receptor class. Thus these findings may provide interventions for pathologies of sensory processing.


Assuntos
Neurônios/fisiologia , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Sinapses/fisiologia , Tálamo/fisiologia , Zona Incerta/fisiologia , Potenciais de Ação/fisiologia , Simulação por Computador , Cinética , Modelos Neurológicos , Inibição Neural/fisiologia , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA