Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 519
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(5): e202301788, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484132

RESUMO

Curcuma angustifolia Roxb. is a plant with medicinal potential, traditionally used to treat different diseases. The present study aimed to determine the antidiabetic activity of C. angustifolia rhizome in vitro and in silico. The methanolic extract of C. angustifolia rhizome was analyzed by FTIR and GC-MS to determine the phytochemicals present. The antidiabetic potential of the extract was evaluated by different assays in vitro. The extract inhibited both α-amylase and α-glucosidase enzymes and the glucose diffusion through the dialysis membrane in a concentration-dependent manner with IC50 values of 530.39±0.09, 293.75±0.11, and 551.74±0.3 µg/ml respectively. The methanolic extract also improved yeast cell's ability to take up glucose across plasma membranes and the adsorption of glucose. The findings were supported by molecular docking studies. The results showed that the methanol extract of C. angustifolia rhizome has significant antidiabetic activity and thus can be also studied to isolate the potential compound with antidiabetic activities.


Assuntos
Curcuma , Hipoglicemiantes , Metanol , Simulação de Acoplamento Molecular , Extratos Vegetais , Rizoma , alfa-Amilases , alfa-Glucosidases , Curcuma/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Rizoma/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo , Metanol/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Relação Dose-Resposta a Droga , Glucose/metabolismo
2.
J Dairy Sci ; 107(7): 4509-4523, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38369111

RESUMO

Lowering dietary protein content is a promising strategy to reduce N excretions in cattle but it requires improved N utilization by the animal. Feed enzymes (e.g., exogenous α-amylase) and plant extracts (e.g., essential oils [EO]) are 2 additives that may enhance rumen function and possibly also microbial protein yield. This may increase fat- and protein-corrected milk yield (MY) and milk nitrogen efficiency and thus lower N losses from dairy cows. Both types of additives were studied in an experiment including 39 Holstein cows that had (average ± SD) 40.7 ± 7.95 kg/d MY, 89 ± 43 DIM, 2.7 ± 1.5 lactations, and 677 ± 68.6 kg of BW, consisting of a covariate (4 wk) and treatment period (5 wk). During the whole experiment cows were fed a typical Benelux diet (CTRL), supplemented with concentrates to meet individual requirements for energy and MP, which were fulfilled for 100% and 101%, respectively. The total diet was low in CP (15.5%) and relatively high in starch (22.6% and 6.6% rumen bypass starch). Cows were balanced for parity, DIM, MY, and roughage intake and randomly assigned to one of 3 groups, which received the following treatments in the treatment period: (1) CTRL (n = 13); (2) CTRL + 14 g/cow per day Ronozyme RumiStar α-amylase enzyme (AMEZ, n = 13; DSM); and (3) CTRL + 2.5 g/cow per day Crina Protect, a blend of EO components (ESOL, n = 13; DSM). Animal performance, ruminal pH, and enteric gas emissions were monitored throughout the experiment. During the last week of the covariate and treatment periods, nitrogen balances were conducted, total-tract nutrient digestibility was determined, and urinary allantoin and uric acid were determined as indicators for microbial N production. The statistical model applied to these variables contained group and DIM during treatment period as fixed effects and the values from the covariate period as covariate. Post hoc Dunnet-corrected comparisons between each treatment group and the control group were explored. The α-amylase enzyme tended to increase apparent total-tract starch digestibility and increased milk lactose concentration. The EO blend tended to increase MY and increased milk N output, milk nitrogen efficiency, and feed efficiency. Therefore, when feeding reduced dietary protein levels, EO have potential to improve the N-use efficiency in cattle, whereas the α-amylase enzyme might increase starch digestibility and milk lactose. However, additional research is necessary to substantiate our findings.


Assuntos
Ração Animal , Suplementos Nutricionais , Nitrogênio , Óleos Voláteis , alfa-Amilases , Animais , Bovinos , Feminino , alfa-Amilases/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Dieta/veterinária , Digestão/efeitos dos fármacos , Lactação , Leite/química , Nitrogênio/metabolismo , Nutrientes/metabolismo , Rúmen/metabolismo
3.
PLoS One ; 19(1): e0297434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38289914

RESUMO

This study aimed to obtain a high yield and purity of Sargassum pallidum polyphenol extracts (SPPE) and study its enzyme activity. Fresh Sargassum pallidum seaweed was selected for optimization of ultrasound-assisted extraction (UAE) conditions and purification conditions using macroporous resin and Sephadex LH20 to obtain SPPE. The SPPE was characterized using UPLC-QTOF-MS/MS and α-amylase, α-glucosidase, tyrosinase, and AchE inhibitory activity were determined. The maximum extraction rate of SPPE was 7.56 mg GAE/g and the polyphenol purity reached 70.5% after macroporous resin and Sephadex LH-20 purification. A total of 50 compounds were identified by UPLC-QTOF-MS/MS. The IC50 values of SPPE were 334.9 µg/mL, 6.290 µg /mL, 0.834 mg /mL and 0.6538 mg /mL for α-amylase, α-glucosidase, tyrosinase and AchE, respectively. Molecular docking technology further revealed the effects of SPPE on the above enzymes. This study provided information on the potential hypoglycemic, whitening and anti-Alzheimer's disease biological activities of SPPE, which had guiding significance for the purification and development of other seaweed polyphenols.


Assuntos
Polifenóis , Sargassum , Polifenóis/farmacologia , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/metabolismo , alfa-Glucosidases/metabolismo , Espectrometria de Massas em Tandem , Globo Pálido , alfa-Amilases/metabolismo , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia
4.
Chem Biodivers ; 21(2): e202300960, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217335

RESUMO

Diabetes is a prevalent metabolic disorder associated with various complications. Inhibition of α-glucosidase and α-amylase enzymes is an effective strategy for managing non-insulin-dependent diabetes mellitus. This study aimed to investigate the antioxidant and antidiabetic potential of Ormocarpum cochinchinense leaf through in vitro and in silico approaches. The methanol extract exhibited the highest phenolic and flavonoid content over solvent extracts aqueous, acetone, hexane, and chloroform, the same has been correlating with strong antioxidant activity. Furthermore, the methanol extract demonstrated significant inhibitory effects on α-amylase and α-glucosidase enzymes, indicating its potential as an antidiabetic agent. Molecular docking analysis identified compounds, including myo-inositol, with favorable binding energies comparable to the standard drug metformin. The selected compounds displayed strong binding affinity towards α-amylase and α-glucosidase enzymes. Structural dynamics analysis revealed that myo-inositol formed a more stable complex with the enzymes. These findings suggest that O. cochinchinense leaf possesses antioxidant and antidiabetic properties, making it a potential source for developing therapeutic agents.


Assuntos
Antioxidantes , Hipoglicemiantes , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Antioxidantes/farmacologia , Antioxidantes/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , alfa-Glucosidases/metabolismo , Metanol , Simulação de Acoplamento Molecular , Extratos Vegetais/química , alfa-Amilases/metabolismo , Folhas de Planta/metabolismo , Inositol/farmacologia
5.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003703

RESUMO

α-Amylase is a generally acknowledged molecular target of a distinct class of antidiabetic drugs named α-glucosidase inhibitors. This class of medications is scarce and rather underutilized, and treatment with current commercial drugs is accompanied by unpleasant adverse effects. However, mammalian α-amylase inhibitors are abundant in nature and form an extensive pool of high-affinity ligands that are available for drug discovery. Individual compounds and natural extracts and preparations are promising therapeutic agents for conditions associated with impaired starch metabolism, e.g., diabetes mellitus, obesity, and other metabolic disorders. This review focuses on the structural diversity and action mechanisms of active natural products with inhibitory activity toward mammalian α-amylases, and emphasizes proteinaceous inhibitors as more effective compounds with significant potential for clinical use.


Assuntos
Doenças Metabólicas , alfa-Amilases , Animais , Humanos , alfa-Amilases/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Inibidores de Glicosídeo Hidrolases/química , Doenças Metabólicas/tratamento farmacológico , alfa-Glucosidases/química , Extratos Vegetais/uso terapêutico , Mamíferos/metabolismo
6.
Food Res Int ; 173(Pt 2): 113368, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803707

RESUMO

Astilbin, a natural flavonoid, possesses multiple functionalities, while the poor bioavailability seriously restricts its application in functional food and medicine. Therefore, in this study, a natural deep eutectic solvent (NaDES) with choline chloride: lactic acid (CHCL-LAC) is selected to deliver astilbin by evaluating the bioaccessibility and antioxidant capacity during in vitro gastrointestinal digestion, and the inhibitory effect with underlying mechanism of astilbin-CHCL-LAC against α-amylase/α-glucosidase were investigated. The CHCL-LAC showed significant high astilbin bioaccessibility (84.1% bioaccessible) and DPPH and ORAC antioxidant capacity with 75.7% and 57.7% respectively after 3 h in vitro digestion, which may be attributed by hydrogen bond based supramolecule formed between astilbin and CHCL-LAC. Moreover, significant inhibitions of astilbin-CHCL-LAC on α-amylase (IC50 of 0.67 g/L) and α-glucosidase (IC50 of 0.64 g/L) were observed in mixed competitive and non-competitive manners. The dominant binding force between enzymes and astilbin were the hydrogen and hydrophobic interaction. This is the first time that the underlying mechanisms for astilbin delivered by NaDESs were revealed, suggesting that CHCL-LAC-based NaDESs are promising ready-to-use vehicles of natural inhibitors for carbohydrate-hydrolyzing enzymes.


Assuntos
Antioxidantes , alfa-Glucosidases , alfa-Glucosidases/metabolismo , Antioxidantes/química , alfa-Amilases/metabolismo , Extratos Vegetais/química
7.
J Enzyme Inhib Med Chem ; 38(1): 2274798, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37905438

RESUMO

Type 2 diabetes (T2D) is a progressive metabolic disorder of glucose metabolism. One of the therapeutic approaches for the treatment of T2D is reducing postprandial hyperglycaemia through inhibition of the digestive enzymes α-glucosidase and α-amylase. In this context, aimed at identifying natural products endowed with anti-T2D potential, we focused on Ptilostemon casabonae (L.) Greuter, a species belonging to Asteraceae family. Enzymatic inhibition, antioxidant activity, phenolic composition and cellular assays were performed. This study revealed that the P. casabonae hydroalcoholic extract exerts a potent inhibitory activity against α-glucosidase. This activity is supported by an antioxidant effect, preventing ROS formation in a stressed cellular system. HPLC-PDA-MS/MS analysis, revealed a complex polyphenolic fraction. Among the tested pure compounds, 1,5-dicaffeoylquinic acid, apigenin and rutin displayed good α-glucosidase inhibitory activity. Our study suggested new potential of P. casabonae encouraging us to further testing the possible therapeutic potential of this extract.


Assuntos
Asteraceae , Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/tratamento farmacológico , Antioxidantes/farmacologia , Hipoglicemiantes/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , alfa-Glucosidases/metabolismo , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem , alfa-Amilases/metabolismo
8.
Int J Biol Macromol ; 252: 126442, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611683

RESUMO

Starch hydrolyzing α-amylase from germinated fenugreek (Trigonella foenum-graecum) has been purified 104-fold to apparent electrophoretic homogeneity with a final specific activity of 297.5 units/mg. SDS-PAGE of the final preparation revealed a single protein band of 47.5 kDa, supported by LC/MS analysis and size-exclusion chromatography on the Superdex 200 (ÄKTA-FPLC). α-Amylase exhibited maximum activity at pH 5.5. An activation energy (Ea) of 9.12 kcal/mol was found to exist in the temperature range of 20 to 90 °C. When substrate concentrations were evaluated between 0.5 and 10 mg/mL, the Km and Vmax values for starch were observed to be 1.12 mg/mL and 384.14 µmol/min/mg, respectively. The major substrate starch exhibited high specificity for fenugreek α-amylase. In the presence of EDTA (5 mM), the activity was lost, however, it could be largely reversed with the addition of calcium. Furthermore, an effort was made to assess the ability of fenugreek seed-derived partially purified (DEAE-cellulose enzyme) and purified α-amylase to disperse inside 48 h-old biofilms of Staphylococcus aureus MTCC740. The outcomes clearly demonstrated that the purified and partially purified α-amylase both exhibited strong biofilm dispersion activity.


Assuntos
Trigonella , Trigonella/química , Sementes/química , Staphylococcus aureus/metabolismo , alfa-Amilases/metabolismo , Extratos Vegetais/metabolismo , Amido/metabolismo
9.
Future Med Chem ; 15(13): 1149-1165, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37551660

RESUMO

Aim: The deaths of thousands of people and millions affected by diabetes mellitus triggered us to look for alternative possible solutions to cure diabetes and its complications. Materials & methods: A series of hydrazinylthiazole carboxylates (3a-n) was prepared by cyclocondensation reaction of thiosemicarbazones with ethyl 2-chloroacetoacetate. These compounds were screened for antidiabetic potential through α-amylase inhibition, antiglycation and antioxidant assays. Results & conclusion: Most of the compounds exhibited a promising antidiabetic property. Compounds 3e and 3h showed excellent α-amylase and glycation inhibition properties. The hemolytic assay indicated that all compounds are biocompatible. Docking studies carried out on α-amylase target showed correlation between in vitro inhibition and binding energy.


Assuntos
Diabetes Mellitus , Extratos Vegetais , Humanos , Extratos Vegetais/química , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Antioxidantes/farmacologia , alfa-Amilases/metabolismo , Simulação de Acoplamento Molecular
10.
Protein Pept Lett ; 30(6): 520-529, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37171010

RESUMO

INTRODUCTION: Plant non-specific lipid transfer proteins (nsLTPs) play an important role in plant resistance to various stresses, and show potential applications in agriculture, industrial manufacturing, and medicine. In addition, as more and more nsLTPs are identified as allergens, nsLTPs have attracted interest due to their allergenicity. Two nsLTPs from Tartary buckwheat have been isolated and identified. There is a need to study their biochemical characteristics and allergenicity. OBJECTIVE: The study aims to investigate the biochemical characteristics of two nsLTPs from Tartary buckwheat seeds and evaluate their potential allergenicity. METHODS: Two nsLTPs derived from Tartary buckwheat, namely FtLTP1a and FtLTP1b, were produced by gene cloning, expression, and purification. Sequence analysis and biochemical characteristics of the proteins, including lipid binding ability, α-amylase inhibition activity, antifungal activity, and allergenic activity, were investigated. RESULTS: High-purity recombinant FtLTP1a and FtLTP1b were obtained. FtLTP1a and FtLTP1b exhibited similar lipid binding and antifungal properties. Only FtLTP1b showed weak inhibitory activity against α-amylase. CONCLUSION: FtLTP1b could specifically bind IgE in the serum allergic to buckwheat and cross-react with pollen (w6). FtLTP1b is a novel allergenic member of the lipid-transfer protein 1 family found in Tartary buckwheat.


Assuntos
Fagopyrum , Fagopyrum/química , Fagopyrum/genética , Fagopyrum/metabolismo , Proteínas de Plantas/química , Antifúngicos , Alérgenos/química , Análise de Sequência , Sementes/química , alfa-Amilases/metabolismo , Lipídeos/análise
11.
Oxid Med Cell Longev ; 2023: 5648837, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151604

RESUMO

Materials and Methods: The extract library (n-hexane (NH), ethyl acetate (EA), methanol (M), distilled water (DW), and combined extract (CE)) was standardized using in vitro phytochemical, antioxidant, and α-amylase inhibition assays, after which the protective effect of selected "hit," i.e., CE against metabolic syndrome, was determined in vivo, using rats fed a high-fat diet supplemented with additional cholesterol administration. CE was administered to Sprague Dawley rats in high dose as 100 mg/kg in carboxymethyl cellulose (CMC) (1 ml; 0.75% in DW) and low-dose group as 50 mg/kg in CMC (0.5 ml; 0.75% in DW). After 10 weeks, the effects of CE on insulin resistance, lipid metabolism, nonalcoholic fatty liver disease (NAFLD), oxidative stress, and genotoxicity were assessed through histological, biochemical, and hematological investigations. Results: Phytochemical analysis including RP-HPLC analysis of the extracts showed that flavonoids and phenolics (myricetin, kaempferol, and apigenin), previously known to be effective against obesity and diabetes, are present in the extracts. Antioxidant studies revealed that the plant possesses a highly significant (p < 0.05) concentration of antioxidants. Satisfactory α-amylase inhibitory activity was also observed in in vitro experiments. In vivo studies showed that CE-administered animals had significantly (p < 0.05) lower weight gain and smaller adipocytes than the control group. Moreover, CE resisted any significant (p < 0.05) change in the organ weights. Analogous to findings from its traditional use, the plant extract had a positive modulatory effect on insulin resistance and hyperglycemia. The study also indicated that CE resisted high-fat diet-induced disturbance in lipid profile and countered any pathological changes in liver enzymes caused by fat-infused diet. Furthermore, a study on endogenous antioxidant levels indicated that CE was effective in maintaining catalase and peroxidase levels within the normal range and resisted the effects of lipid peroxidation of thiobarbituric acid reactive substances. Conclusion: In principle, the current study's findings scientifically validate the implication of T. linearis in metabolic syndrome and recommend further studies on molecular insights of the observed therapeutic activity.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Ratos , Animais , Antioxidantes/metabolismo , Ratos Sprague-Dawley , Síndrome Metabólica/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Estresse Oxidativo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/metabolismo , alfa-Amilases/metabolismo , Fígado/metabolismo
12.
Molecules ; 28(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37049710

RESUMO

Efficient inactivation of microbial α-amylases (EC 3.2.1.1) can be a challenge in starch systems as the presence of starch has been shown to enhance the stability of the enzymes. In this study, commonly used inactivation methods, including multistep washing and pH adjustment, were assessed for their efficiency in inactivating different α-amylases in presence of raw potato starch. Furthermore, an effective approach for irreversible α-amylase inactivation using sodium hypochlorite (NaOCl) is demonstrated. Regarding inactivation by extreme pH, the activity of five different α-amylases was either eliminated or significantly reduced at pH 1.5 and 12. However, treatment at extreme pH for 5 min, followed by incubation at pH 6.5, resulted in hydrolysis yields of 42-816% relative to controls that had not been subjected to extreme pH. "Inactivation" by multistep washing with water, ethanol, and acetone followed by gelatinization as preparation for analysis gave significant starch hydrolysis compared to samples inactivated with NaOCl before the wash. This indicates that the further starch degradation observed in samples subjected to washing only took place during the subsequent gelatinization. The current study demonstrates the importance of inactivation methodology in α-amylase-mediated raw starch depolymerization and provides a method for efficient α-amylase inactivation in starch systems.


Assuntos
Solanum tuberosum , alfa-Amilases , alfa-Amilases/metabolismo , Solanum tuberosum/metabolismo , Hidrólise , Etanol , Amido/metabolismo
13.
Food Chem ; 416: 135795, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871505

RESUMO

To investigate the effects of "golden flora" amount on the sensory quality, metabolites and bioactivities of Fu brick tea (FBT), FBT samples with different "golden flora" amounts were prepared from the same materials by adjusting the water content before pressing. With the increase of "golden flora" in samples, the tea liquor color changed from yellow to orange red and the astringent taste gradually diminished. Targeted analysis demonstrated that (-)-epigallocatechin gallate, (-)-epicatechin gallate, and most amino acids gradually decreased as the increase of "golden flora". Seventy differential metabolites were identified by untargeted analysis. Among them, sixteen compounds including two Fuzhuanins and four EPSFs were positively correlated with "golden flora" amount (P < 0.05). The FBT samples with "golden flora" exhibited significantly higher inhibitory potency on α-amylase and lipase than the samples without "golden flora". Our results provide a theoretical basis of guiding FBT processing based on desired sensory quality and metabolites.


Assuntos
Chá , alfa-Amilases , Chá/química , alfa-Amilases/metabolismo , Lipase , Metabolômica/métodos
14.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835060

RESUMO

Controlling post-prandial hyperglycemia and hyperlipidemia, particularly by regulating the activity of digestive enzymes, allows managing type 2 diabetes and obesity. The aim of this study was to assess the effects of TOTUM-63, a formulation of five plant extracts (Olea europaea L., Cynara scolymus L., Chrysanthellum indicum subsp. afroamericanum B.L.Turner, Vaccinium myrtillus L., and Piper nigrum L.), on enzymes involved in carbohydrate and lipid absorption. First, in vitro inhibition assays were performed by targeting three enzymes: α-glucosidase, α-amylase, and lipase. Then, kinetic studies and binding affinity determinations by fluorescence spectrum changes and microscale thermophoresis were performed. The in vitro assays showed that TOTUM-63 inhibited all three digestive enzymes, particularly α-glucosidase (IC50 of 13.1 µg/mL). Mechanistic studies on α-glucosidase inhibition by TOTUM-63 and molecular interaction experiments indicated a mixed (full) inhibition mechanism, and higher affinity for α-glucosidase than acarbose, the reference α-glucosidase inhibitor. Lastly, in vivo data using leptin receptor-deficient (db/db) mice, a model of obesity and type 2 diabetes, indicated that TOTUM-63 might prevent the increase in fasting glycemia and glycated hemoglobin (HbA1c) levels over time, compared with the untreated group. These results show that TOTUM-63 is a promising new approach for type 2 diabetes management via α-glucosidase inhibition.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores de Glicosídeo Hidrolases , Extratos Vegetais , alfa-Glucosidases , Animais , Camundongos , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Cinética , Lipase/metabolismo , Obesidade , Extratos Vegetais/farmacologia
15.
Chem Biodivers ; 20(3): e202200944, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36757004

RESUMO

The phytochemical investigation of Thymelaea tartonraira leaves led to the isolation and characterization of six compounds, including one new flavonoid glycoside identified as hypolaetin 8-O-ß-D-galactopyranoside (4) along with five known compounds, daphnoretin (1), triumbelletin (2), genkwanin (3), tiliroside (5) and yuankanin (6). Their structures were established based on spectroscopic methods, such as UV, IR, NMR, and HR-ESI-MS. Triumbelletin (2) and tiliroside (5) were isolated for the first time from T. tartonraira leaves. The antioxidant property of all isolated compounds was tested based on DPPH, FRAP and total antioxidant capacity assays. Compound 4 displayed an antioxidant potency more interesting than vitamin C with an IC50 =15.00±0.50 µg/ml, followed by compound 5. Furthermore, the both compounds 4 and 5 were tested for their α-amylase inhibitory activity in-vitro. Compound 4 displayed higher potency to inhibit α-amylase, with an IC50 =46.49±2.32 µg/ml, than compound 5, with an IC50 =184.2±9.2 µg/ml, while the reference compound acarbose presented the highest potency to inhibit α-amylase with an IC50 =0.44±0.022 µg/ml. Compound 4 displayed a strong inhibitory ability of α-glucosidase activity approximately twice more than the reference compound, acarbose, with IC50 values of 60.00±3.00 and 125.00±6.25 µg/ml, respectively. Thus, compound 4 exhibited a specific inhibitory activity for α-glucosidase. The molecular docking studies have supported our findings and suggested that compound 4 has been involved in various binding interactions within the active site of both enzymes α-amylase and α-glucosidase.


Assuntos
Acarbose , Flavonoides , Inibidores de Glicosídeo Hidrolases , Acarbose/análise , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo , Antioxidantes/farmacologia , Antioxidantes/análise , Flavonoides/química , Flavonoides/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Extratos Vegetais/química , Folhas de Planta/química
16.
Food Chem ; 410: 135439, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36641912

RESUMO

For the first time, the current work applied fungal α-amylase treated corn starch in granular form to produce solid state malate-esterified starch (MES). The pores and channels created on the granules after the enzymatic modification could provide more possibilities for malic acid to esterify the starch, resulting in the increase of substitution degree (0.084) and reaction efficiency (86.6%) compared to NS. Based on the obtained results, the dual treatment significantly increased solubility, amylose content, and syneresis, but reduced transparency, viscosity, digestibility rate, and swelling power compared to those of NS. The occurrence of esterification onto starch chains was confirmed by FT-IR at 1720 cm-1. Other techniques including SEM, XRD, and DSC were employed to examine changes in the structure of starch granules after applying each treatment. Also, the greenness of the combined modification (score: 77) was proved by using a new methodology named Eco-Scale.


Assuntos
Amido , alfa-Amilases , Amido/química , alfa-Amilases/metabolismo , Malatos/química , Zea mays/química , Esterificação , Espectroscopia de Infravermelho com Transformada de Fourier , Amilose
17.
Food Chem ; 410: 135261, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36610093

RESUMO

l-Cysteine (l-Cys) pre-treatment at two concentrations (150 mg/kg; PC1 and 300 mg/kg; PC2) on potato starch was conducted to produce starch-cysteine conjugates. Afterward, the effect of α-amylase on starch digestibility of potato native (PE) and starch-cysteine conjugates (PC1E and PC2E) were examined. Thiolation not only damaged starch according to the formation of pore and blister-like spots on the surface of starch granules, but also provided the functional group to immobilize α-amylase. Starch-cysteine conjugates showed a significantly greater degree of hydrolysis 24.1 % (PC1E) and 36.5 % (PC2E) in comparison with (16.8 %; PE). Destroying the granules integrity were accompanied with decreased crystallinity from 37.7 % to 33.1 % (PC1), 31.1 % (PC2), 27.6 % (PC1E) and 22.4 % (PC2E) with increasing thiol content (%) on surface from 2.3 %; PC1 to 3.4 %; PC2. The ratio of 1047/1022 cm- 1 reduced from 1.112 (native potato starch) to 0.974 (PC1E) and 0.867 (PC2E) after being subjected to α-amylase. Additionally, substantially low pasting viscosities (determined by RVA) along with the thermal properties (determined by DSC) of starch-cysteine conjugates treated with α-amylase could confirm the degradation of molecular structures containing low swelling power.


Assuntos
Solanum tuberosum , alfa-Amilases , alfa-Amilases/metabolismo , Amido/química , Cisteína , Hidrólise , Solanum tuberosum/química
18.
Food Chem ; 406: 135047, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-36459801

RESUMO

Wheat is the staple crop for 35% of the world's population, providing a major source of calories, mainly in the form of starch. The digestibility of wheat starch varies between different flours and products. Wheat products that are rapidly digested elicit large post-prandial glucose peaks associated with metabolic disorders. We investigated the impact of protein on starch digestion in three commercial flours with different grain hardness. A soluble extract of wheat proteins reduced starch digestion, even following gastric proteolysis. This extract was enriched in proteinaceous α-amylase inhibitors which were partially degraded during gastric proteolysis. Starch digestion kinetic analysis was carried out for flour samples pre-treated with different pepsin activities. The rate of starch digestion was altered following pepsin pre-digestion, and the extent of starch digestion increased in response to pepsin pre-digestion. We conclude that soluble proteinaceous alpha-amylase inhibitors present in wheat can escape gastric digestion and significantly contribute to reducing starch digestion in the small intestine.


Assuntos
Farinha , Amido , Amido/metabolismo , Farinha/análise , Digestão/fisiologia , Dureza , Pepsina A/metabolismo , Triticum/metabolismo , Cinética , alfa-Amilases/metabolismo , Extratos Vegetais/metabolismo
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 289: 122251, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36542921

RESUMO

Developing naturally active components to control α-amylase/α-glucosidase activity is highly desired for preventing and managing type 2 diabetes. Rapeseed oil is rich in active phenolic compounds and seed oil is a major source of liposoluble inhibitors to these enzymes. However, it remains unclear about the interaction of phenolic compounds in rapeseed oil with α-amylase/α-glucosidase. This study found that the important phenolic compounds from rapeseed oil (Sinapic acid, SA; canolol, CAO; canolol dimer, CAO dimer) possessed effective inhibition performance against α-amylase and α-glucosidase. CAO showed the lowest and highest inhibitory effect, respectively. In the kinetics studies, the inhibition mechanism of SA/CAO/CAO dimer against α-glucosidase was non-competitive, exhibiting a different way from α-amylase. Fluorescence quenching spectra implied that the static processes were responsible for the spontaneous binding between the compounds and enzymes. Fourier-transform infrared spectroscopy (FT-IR) displayed these compounds-induced conformation alterations of α-amylase/α-glucosidase. Molecular docking revealed that SA/CAO/CAO dimer decreased the catalytic efficiency of α-amylase/α-glucosidase through hydrogen bonds, hydrophobic force, or π-π interaction. Molecular dynamics matched well with the experimental and docking results regarding the inhibitory behaviors and interactions toward α-amylase/α-glucosidase. These results demonstrated the potential benefits of phenolic compounds from rapeseed oil in antidiabetic-related activities.


Assuntos
Diabetes Mellitus Tipo 2 , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , Inibidores de Glicosídeo Hidrolases/química , alfa-Glucosidases/metabolismo , Óleo de Brassica napus , alfa-Amilases/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Chem Biol Interact ; 370: 110312, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36535312

RESUMO

In this study, eight new compounds (7a-h) based on triazole compounds containing ester groups were synthesized with high yields. The structures of the synthesized compounds (7a-h) were elucidated by various spectroscopic methods (element analysis, FT-IR, 1H-(13C) NMR). Antioxidant, anticancer, and α-amylase enzyme inhibition activities of synthesized new triazole derivatives were carried out, and the effects of different groups on the activity were investigated. When the determined antioxidant properties of the compounds were examined, all synthesized compounds showed a moderate radical scavenging effect against radicals depending on the concentration (6.25-200 g/mL). All compounds except the three derivatives were found to have higher IC50 values than the standard drug acarbose (IC50: 891 µg/mL) according to the α-amylase enzyme inhibition results. Compound 7g (IC50: 50 g/mL) was discovered to have nearly eighteen (18) times the activity of the conventional medication acarbose (IC50: 891 µg/mL). Compounds synthesized for anticancer activity studies were screened against the Hela cell line, and the results were compared with standard cis-platinum (IC50: 16.30 µg/mL). Compound 7g (IC50: 19.78 µg/mL) was found to have almost the same activity as cis-platinum. Using Qikprop, the compounds were thoroughly tested for ADME qualities, and none violated any drug similarity standards. According to ADME data, whole physicochemical drug-likeness parameters of molecules remained within defined ranges as stipulated in the Lipinski rules (RO5) and revealed a high bioavailability profile. The molecular docking results with 2QV4 and 4GQR alpha-amylase enzymes demonstrated that all molecules have a high affinity, indicating polar and apolar interaction with critical amino acids in the α-amylase binding pocket.


Assuntos
Acarbose , Antioxidantes , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Antioxidantes/farmacologia , Células HeLa , Cisplatino , Triazóis/farmacologia , Triazóis/química , Espectroscopia de Infravermelho com Transformada de Fourier , alfa-Amilases/metabolismo , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA