Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 3): 126902, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37714233

RESUMO

Roselle is rich in an extensive diversity of beneficial substances, including phenolic acids, amino acids, anthocyanins, vitamins, and flavonoids. Herein, the chemical constituents in Roselle extract (RE) were identified by UPLC-DAD-QTOF-MS. Besides, its inhibitory effects on three digestive enzymes, i.e. α-amylase, α-glucosidase, and pancreatic lipase, were investigated in both in vitro and in vivo. Thirty-three constituents including hibiscus acid, 18 phenolic acids, 2 anthocyanins and 12 flavonoids were identified. The anthocyanins content in RE was 21.44 ± 0.68 %, while the contents of chlorogenic acids, rutin and quercetin were 17.76 ± 2.28 %, 0.31 ± 0.01 % and 0.32 ± 0.01 %, respectively. RE inhibited pancreatic lipase in a non-competitive way with an IC50 value of 0.84 mg/mL. Besides, it demonstrated a mixed-type inhibition on both α-glucosidase and α-amylase with IC50 values of 0.59 mg/mL and 1.93 mg/mL, respectively. Fluorescence quenching assays confirmed the binding of RE to the enzyme proteins. Furthermore, rats pre-treated with RE at doses of 50 and 100 mg/kg body weight (bwt) exhibited significant reductions in fat absorption and improvements in fat excretion through feces. Additionally, the in vivo study revealed that RE was effective in suppressing the increase of blood glucose after starch consumption, while its effects on maltose and sucrose consumption were relatively weak.


Assuntos
Antocianinas , Hibiscus , Ratos , Animais , Hibiscus/química , alfa-Glucosidases/metabolismo , Inibidores Enzimáticos/química , Flavonoides/farmacologia , alfa-Amilases/química , Lipase , Extratos Vegetais/química , Fármacos Gastrointestinais , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química
2.
J Ethnopharmacol ; 312: 116501, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37100261

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Herbal traditional medicine is used by millions of people in Africa for treatment of ailments such as diabetes mellitus, stomach disorders and respiratory diseases. Xeroderris stuhlmannii (Taub.) Mendonca & E.P. Sousa (X. stuhlmannii (Taub.)) is a medicinal plant used traditionally in Zimbabwe to treat type 2 diabetes mellitus (T2DM) and its complications. However, there is no scientific evidence to support its inhibitory effect against digestive enzymes (α-glucosidases) that are linked to high blood sugar in humans. AIM OF THE STUDY: This work aims to investigate whether bioactive phytochemicals of crude X. stuhlmannii (Taub.) can scavenge free radicals and inhibit α-glucosidases in order to reduce blood sugar in humans. MATERIALS AND METHODS: Here we examined the free radical scavenging potential of crude aqueous, ethyl acetate and methanolic extracts of X. stuhlmannii (Taub.) using the diphenyl-2-picrylhydrazyl assay in vitro. Furthermore, we carried out in vitro inhibition of α-glucosidases (α-amylase and α-glucosidase) by the crude extracts using chromogenic 3,5-dinitrosalicylic acid and p-nitrophenyl-α-D-glucopyranoside substrates. We also used molecular docking approaches (Autodock Vina) to screen for bioactive phytochemical compounds targeting the digestive enzymes. RESULTS: Our results showed that phytochemicals in X. stuhlmannii (Taub.) aqueous, ethyl acetate and methanolic extracts scavenged free radicals with IC50 values ranging from 0.002 to 0.013 µg/mL. Furthermore, crude aqueous, ethyl acetate and methanolic extracts significantly inhibited α-amylase and α-glucosidase with IC50 values of 10.5-29.5 µg/mL (versus 54.1 ± 0.7 µg/mL for acarbose) and 8.8-49.5 µg/mL (versus 161.4 ± 1.8 µg/mL for acarbose), respectively. In silico molecular docking findings and pharmacokinetic predictions showed that myricetin is likely a novel plant-derived α-glucosidase inhibitor. CONCLUSION: Collectively, our findings suggest pharmacological targeting of digestive enzymes by X. stuhlmannii (Taub.) crude extracts may reduce blood sugar in humans with T2DM via inhibition of α-glucosidases.


Assuntos
Diabetes Mellitus Tipo 2 , Plantas Medicinais , Humanos , alfa-Glucosidases/química , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Glicemia , Acarbose , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Plantas Medicinais/química , Metanol , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , alfa-Amilases/química , Antioxidantes/farmacologia
3.
BMC Complement Med Ther ; 23(1): 3, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604684

RESUMO

BACKGROUND: The use of conventional medical therapies has proven to have many setbacks and safety concerns that need further improvement. However, herbal medicine has been used for over 2000 years, and many studies have proven the use of herbs to be effective and safe. This article discussed the efficacy of different herbal products used in the management of obesity. To evaluate the efficacy of seven herbal-based weight loss products currently available on the Palestinian market, using in vitro assays to screen for antioxidants, anti-amylase, and anti-lipase effects for each product. METHOD: Pancreatic lipase and salivary amylase inhibitory activities, as well as antioxidant analysis, were tested in vitro on a variety of herbal products. Then the IC50 was measured for each test. RESULTS: The anti-lipase assay results, IC50 values in (µg/mL) of each of the seven products (Product A, product B, product C, product D, product E, product F, and product G) were 114.78, 532.1, 60.18, 53.33, 244.9, 38.9, and 48.97, respectively. The IC50 value for orlistat (Reference) was 12.3 µg/ml. On the other hand, the IC50 value for alpha amylase inhibition of the seven products (Product A, product B, product C, product D, product E, product F, and product F) were 345.93, 13,803.84 (Inactive), 73.79, 130.91, 165.95, 28.18, and 33.11 µg/ml respectively, while acarbose (Reference) was 23.38 µg/ml. The antioxidant activity (IC50 values) for the seven products (Product A, product B, product C, product D, product E, product F, and product F) were 1258.92, 707.94, 79.43, 186.20, 164.81, 17.53, and 10.47 µg/ml respectively. While the IC50 value for Trolox was 2.70 µg/ml. CONCLUSION: It can be concluded that the seven products showed varied anti-lipase, anti-amylase, and antioxidant effects. However, products F and G showed superiority in all categories.


Assuntos
Fármacos Antiobesidade , Extratos Vegetais , Plantas Medicinais , alfa-Amilases/química , Antioxidantes/química , Antioxidantes/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Oriente Médio , Fármacos Antiobesidade/química , Fármacos Antiobesidade/farmacologia
4.
Nat Prod Res ; 37(24): 4121-4130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36661236

RESUMO

One new compound, 4,7-dihydroxy-2-hydroxymethyl-5,6-dimethoxyanthraquinone (1), along with eight known compounds (2-9) were isolated from the methanol extracts of the aerial parts of Chamaecrista pumila (Lam.) K. Larsen. Their chemical structure was determined based on spectroscopic data interpretation and comparison with the reported data. The inhibitory effects of them on α-amylase and α-glucosidase were performed. The results showed that compounds 4, 6, 8, and 9 against potent α-glucosidase with the inhibition values of 98.14 ± 0.05, 98.19 ± 0.04, 97.01 ± 0.49, 84.43 ± 0.6% at 50 µM, respectively. Compounds 4 and 6 displayed significance against α-amylase at 200 µM with inhibition values of 22.35 ± 1.10 and 60.47 ± 0.91%.


Assuntos
Chamaecrista , Inibidores de Glicosídeo Hidrolases , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Hipoglicemiantes/farmacologia , alfa-Glucosidases/química , alfa-Amilases/química , Extratos Vegetais/química , Componentes Aéreos da Planta/química
5.
Appl Biochem Biotechnol ; 195(4): 2261-2281, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35796947

RESUMO

Antidiabetic polyherbal formulations (APH) are used in management of diabetes mellitus (DM). High glucose levels in DM are related to oxidative stress leading to its associated complications. Therefore, assessing antioxidant activity of various APH might unveil an antioxidant-rich formulation for management of DM and its associated complications. Subsequently selecting an antioxidant assessment method is a challenging aspect, considering various in vitro assays working with diverse mechanism of action. Therefore, present study aims to validate the sensitivity/capacity of different antioxidant assay, thereby assessing the antioxidant potential of 9-APH. Obtained results revealed the ABTS·+ values were higher compared to DPPH+ assay. I-9-HAE (DPPH+: IC50 53.31 µg/ml), NK-HAE (ABTS·+: IC50 2.71 µg/ml), and MN-HAE (FRAP and TAC) exhibited highest antioxidant capacity. A significant correlation was obtained between TPC-DPPH+ (r2: 0.8187****). Furthermore, three APH with better antiradical potential was chosen for various in vitro and in silico method, for validating scientific antidiabetic propensities. Among the tested extracts, I-9-HAE (α-amylase inhibition: IC50 831.84 µg/ml) and MN-HAE (α-glucosidase inhibition: IC50 558.64 µg/ml and antiglycation: IC50 883.74 µg/ml) have showed highest antihyperglycemic and antiglycation properties. Finally, the secondary-metabolites of selected APH were screened through literature search, Lipinski rule, ADMET, and ProTox-II. Subsequently, in molecular docking for the selected 9 secondary metabolites, highest binding affinity was observed in apigenin-7-glucuronide for DPPiv (- 9.6), GLP-1 (- 8.8), NADPH (- 8.7), and HSA (- 9.4). Thus, obtained result proposes synergistic interaction with high antioxidant potential of the selected 3-APH and can be considered an alternative for management of DM, where multiple secondary metabolites exert holistic biological effects. Furthermore, our study also provides data on sensitivity/capacity of different in vitro antioxidant assays.


Assuntos
Diabetes Mellitus , Inibidores de Glicosídeo Hidrolases , Humanos , Inibidores de Glicosídeo Hidrolases/química , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Simulação de Acoplamento Molecular , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , alfa-Amilases/química
6.
Molecules ; 27(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36144622

RESUMO

Artemisia verlotiorum Lamotte is recognized medicinally given its long-standing ethnopharmacological uses in different parts of the world. Nonetheless, the pharmacological properties of the leaves of the plant have been poorly studied by the scientific community. Hence, this study aimed to decipher the phytochemicals; quantify through HPLC-ESI-MS analysis the plant's biosynthesis; and evaluate the antioxidant, anti-tyrosinase, amylase, glucosidase, cholinesterase, and cytotoxicity potential on normal (NIH 3T3) and human liver and human colon cancer (HepG2 and HT 29) cell lines of this plant species. The aqueous extract contained the highest content of phenolics and phenolic acid, methanol extracted the most flavonoid, and the most flavonol was extracted by ethyl acetate. The one-way ANOVA results demonstrated that all results obtained were statistically significant at p < 0.05. A total of 25 phytoconstituents were identified from the different extracts, with phenolic acids and flavonoids being the main metabolites. The highest antioxidant potential was recorded for the aqueous extract. The best anti-tyrosinase extract was the methanolic extract. The ethyl acetate extract of A. verlotiorum had the highest flavonol content and hence was most active against the cholinesterase enzymes. The ethyl acetate extract was the best α-glucosidase and α-amylase inhibitor. The samples of Artemisia verlotiorum Lamotte in both aqueous and methanolic extracts were found to be non-toxic after 48 h against NIH 3T3 cells. In HepG2 cells, the methanolic extract was nontoxic up to 125 µg/mL, and an IC50 value of 722.39 µg/mL was recorded. The IC50 value exhibited in methanolic extraction of A. verlotiorum was 792.91 µg/mL in HT29 cells. Methanolic extraction is capable of inducing cell cytotoxicity in human hepatocellular carcinoma without damaging normal cells. Hence, A. verlotiorum can be recommended for further evaluation of its phytochemical and medicinal properties.


Assuntos
Antineoplásicos , Artemisia , Acetatos , Amilases , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Colinesterases , Flavonoides/análise , Flavonoides/farmacologia , Flavonóis , Humanos , Metanol/química , Camundongos , Monofenol Mono-Oxigenase , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , alfa-Amilases/química , alfa-Glucosidases/química
7.
Biofactors ; 48(5): 1118-1128, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35608401

RESUMO

The present study explores the potential of the Azadirachta indica (Neem) plant parts (stem and bark) component gedunin for inhibition of alpha-amylase and alpha glucosidase. In contrast, Methanol at 50 mg/ml and 65 mg/ml had the lowest IC50 in alpha glucosidase and alpha amylase with noncompetitive and mixed inhibition, respectively. Azadirachta indica seeds collected from ICAR showed anti-diabetes activity in vitro and in vivo seeds collected were subjected to soxhlet and nonsoxhlet techniques followed by chromatography. HR-LCMS, HPLC, and FTIR to comprehend phytoconstituents present in the extract were used to comprehend phytoconstituents present in the extract and showed the presence gedunin. Among many hits observed, gedunin was used for docking studies using ICM software and for molecular dynamic simulation using gromacs. The results show significant alpha-amylase inhibitory activity and alpha glucosidase inhibitory activity and interaction of ligand targeting these enzymes, which can be used for cross-validation, in vitro using ligplot maps and visualization.


Assuntos
Azadirachta , Inibidores de Glicosídeo Hidrolases , Azadirachta/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Complexo Ferro-Dextran , Ligantes , Limoninas , Metanol , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , alfa-Amilases/química , alfa-Glucosidases
8.
J Biomol Struct Dyn ; 40(9): 3989-4003, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33272106

RESUMO

The leaves, stem and root bark of Bridelia ferruginea were sequentially extracted with solvents of increasing polarity to yield the hexane, ethyl acetate, ethanol and aqueous extracts. In vitro analysis revealed the ability of the extracts to scavenge 1,1-diphenyl-2-picryl-hydrazyl (DPPH), nitric oxide (NO) and hydroxyl radical. They also inhibited the activities of α-glucosidase, α-amylase and lipase enzymes. Gas chromatography-mass spectroscopic (GC-MS) analysis of the extracts revealed the presence of sterols, aromatics, aliphatic acids and esters. The identified compounds were molecularly docked with α-glucosidase, α-amylase and lipase enzymes. All compounds showed good binding affinities with the enzymes studied. The strongest binding affinities were observed for ß-amyrin, 4-phenylbenzophenone and lupenone for α-glucosidase, α-amylase and lipase enzymes, respectively. The data suggest antioxidant and antidiabetic potential of the different parts of B. ferruginea, with the leaves having the highest potential. These properties can be explored for development of novel anti-diabetic drugs.Communicated by Ramaswamy H. Sarma.


Assuntos
Antioxidantes , alfa-Glucosidases , Antioxidantes/química , Antioxidantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Lipase , Extratos Vegetais/química , Extratos Vegetais/farmacologia , alfa-Amilases/química , alfa-Glucosidases/química
9.
Biomolecules ; 11(12)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34944521

RESUMO

Type-II diabetes mellitus (T2DM) results from a combination of genetic and lifestyle factors, and the prevalence of T2DM is increasing worldwide. Clinically, both α-glucosidase and α-amylase enzymes inhibitors can suppress peaks of postprandial glucose with surplus adverse effects, leading to efforts devoted to urgently seeking new anti-diabetes drugs from natural sources for delayed starch digestion. This review attempts to explore 10 families e.g., Bignoniaceae, Ericaceae, Dryopteridaceae, Campanulaceae, Geraniaceae, Euphorbiaceae, Rubiaceae, Acanthaceae, Rutaceae, and Moraceae as medicinal plants, and folk and herb medicines for lowering blood glucose level, or alternative anti-diabetic natural products. Many natural products have been studied in silico, in vitro, and in vivo assays to restrain hyperglycemia. In addition, natural products, and particularly polyphenols, possess diverse structures for exploring them as inhibitors of α-glucosidase and α-amylase. Interestingly, an in silico discovery approach using natural compounds via virtual screening could directly target α-glucosidase and α-amylase enzymes through Monte Carto molecular modeling. Autodock, MOE-Dock, Biovia Discovery Studio, PyMOL, and Accelrys have been used to discover new candidates as inhibitors or activators. While docking score, binding energy (Kcal/mol), the number of hydrogen bonds, or interactions with critical amino acid residues have been taken into concerning the reliability of software for validation of enzymatic analysis, in vitro cell assay and in vivo animal tests are required to obtain leads, hits, and candidates in drug discovery and development.


Assuntos
Diabetes Mellitus Tipo 2/enzimologia , Hipoglicemiantes/farmacologia , Plantas Medicinais/química , Polifenóis/farmacologia , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo , Simulação por Computador , Diabetes Mellitus Tipo 2/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Humanos , Ligação de Hidrogênio , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Simulação de Acoplamento Molecular , Polifenóis/química , Polifenóis/uso terapêutico , alfa-Amilases/química , alfa-Glucosidases/química
10.
Pharm Biol ; 59(1): 964-973, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34347568

RESUMO

CONTEXT: Melicope latifolia (DC.) T. G. Hartley (Rutaceae) was reported to contain various phytochemicals including coumarins, flavonoids, and acetophenones. OBJECTIVE: This study investigates the antidiabetic and antioxidant effects of M. latifolia bark extracts, fractions, and isolated constituents. MATERIALS AND METHODS: Melicope latifolia extracts (hexane, chloroform, and methanol), fractions, and isolated constituents with varying concentrations (0.078-10 mg/mL) were subjected to in vitro α-amylase and dipeptidyl peptidase-4 (DPP-4) inhibitory assay. Molecular docking was performed to study the binding mechanism of active compounds towards α-amylase and DPP-4 enzymes. The antioxidant activity of M. latifolia fractions and compounds were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and ß-carotene bleaching assays. RESULTS: Melicope latifolia chloroform extract showed the highest antidiabetic activity (α-amylase IC50: 1464.32 µg/mL; DPP-4 IC50: 221.58 µg/mL). Fractionation of chloroform extract yielded four major fractions (CF1-CF4) whereby CF3 showed the highest antidiabetic activity (α-amylase IC50: 397.68 µg/mL; DPP-4 IC50: 37.16 µg/mL) and resulted in ß-sitosterol (1), halfordin (2), methyl p-coumarate (3), and protocatechuic acid (4). Isolation of compounds 2-4 from the species and their DPP-4 inhibitory were reported for the first time. Compound 2 showed the highest α-amylase (IC50: 197.53 µM) and ß-carotene (88.48%) inhibition, and formed the highest number of molecular interactions with critical amino acid residues of α-amylase. The highest DPP-4 inhibition was exhibited by compound 3 (IC50: 911.44 µM). DISCUSSION AND CONCLUSIONS: The in vitro and in silico analyses indicated the potential of M. latifolia as an alternative source of α-amylase and DPP-4 inhibitors. Further pharmacological studies on the compounds are recommended.


Assuntos
Inibidores da Dipeptidil Peptidase IV/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Rutaceae/química , alfa-Amilases/antagonistas & inibidores , Antioxidantes/química , Antioxidantes/farmacologia , Simulação por Computador , Dipeptidil Peptidase 4 , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Técnicas In Vitro , Simulação de Acoplamento Molecular , Estrutura Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Casca de Planta/química , Extratos Vegetais/isolamento & purificação , alfa-Amilases/química
11.
Molecules ; 26(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204669

RESUMO

Abelmoschus esculentus (Okra) is an important vegetable crop, widely cultivated around the world due to its high nutritional significance along with several health benefits. Different parts of okra including its mucilage have been currently studied for its role in various therapeutic applications. Therefore, we aimed to develop and characterize the okra mucilage biopolymer (OMB) for its physicochemical properties as well as to evaluate its in vitro antidiabetic activity. The characterization of OMB using Fourier-transform infrared spectroscopy (FT-IR) revealed that okra mucilage containing polysaccharides lies in the bandwidth of 3279 and 1030 cm-1, which constitutes the fingerprint region of the spectrum. In addition, physicochemical parameters such as percentage yield, percentage solubility, and swelling index were found to be 2.66%, 96.9%, and 5, respectively. A mineral analysis of newly developed biopolymers showed a substantial amount of calcium (412 mg/100 g), potassium (418 mg/100 g), phosphorus (60 mg/100 g), iron (47 mg/100 g), zinc (16 mg/100 g), and sodium (9 mg/100 g). The significant antidiabetic potential of OMB was demonstrated using α-amylase and α-glucosidase enzyme inhibitory assay. Further investigations are required to explore the newly developed biopolymer for its toxicity, efficacy, and its possible utilization in food, nutraceutical, as well as pharmaceutical industries.


Assuntos
Abelmoschus/química , Mucilagem Vegetal/química , Mucilagem Vegetal/isolamento & purificação , Abelmoschus/metabolismo , Antioxidantes/química , Biopolímeros/análise , Biopolímeros/química , Suplementos Nutricionais , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/metabolismo , Extratos Vegetais/farmacologia , Polissacarídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , alfa-Amilases/química , alfa-Glucosidases/química
12.
Molecules ; 26(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201147

RESUMO

Many plants that are commonly used in folk medicine have multidirectional biological properties confirmed by scientific research. One of them is Aerva lanata (L.) Juss. (F. Amaranthaceae). It is widely used, but there are very few scientific data about its chemical composition and pharmacological activity. The aim of the present study was to investigate the chemical composition of phenolic acid (PA)-rich fractions isolated from methanolic extracts of A. lanata (L.) Juss. herb using the liquid/liquid extraction method and their potential antioxidant, anti-inflammatory, and anti-diabetic properties. The free PA fraction (FA), the PA fraction (FB) released after acid hydrolysis, and the PA fraction (FC) obtained after alkaline hydrolysis were analysed using liquid chromatography/electrospray ionization triple quadrupole mass spectrometry (LC-ESI-MS/MS). The phenolic profile of each sample showed a high concentration of PAs and their presence in A. lanata (L.) Juss. herb mainly in bound states. Thirteen compounds were detected and quantified in all samples, including some PAs that had not been previously detected in this plant species. Bioactivity assays of all fractions revealed high 2,2-diphenyl-1-picrylhydrazyl (DPPH•) (2.85 mM Trolox equivalents (TE)/g) and 2,2-azino-bis-3(ethylbenzthiazoline-6-sulphonic acid) (ABTS•+) (2.88 mM TE/g) scavenging activity. Fraction FB definitely exhibited not only the highest antiradical activity but also the strongest xanthine oxidase (XO) (EC50 = 1.77 mg/mL) and lipoxygenase (LOX)(EC50 = 1.88 mg/mL) inhibitory potential. The fraction had the best anti-diabetic properties, i.e., mild inhibition of α-amylase (EC50 = 7.46 mg/mL) and strong inhibition of α-glucosidase (EC50 = 0.30 mg/mL). The activities of all analysed samples were strongly related to the presence of PA compounds and the total PA content.


Assuntos
Amaranthaceae/química , Anti-Inflamatórios/química , Antioxidantes/química , Hidroxibenzoatos/química , Hipoglicemiantes/química , Extratos Vegetais/química , Flavonoides/química , Lipoxigenase/química , Medicina Tradicional/métodos , Metanol/química , Fenóis/química , Xantina Oxidase/química , alfa-Amilases/química , alfa-Glucosidases/química
13.
J Food Sci ; 86(7): 2962-2977, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34076269

RESUMO

Alcalase hydrolyzates were prepared from the albumin (AH) and globulin (GH) fractions of eight chickpea (Cicer arietinum L.) genotypes from Mexico and 10 from other countries. Protein content, antioxidant activity (AA) (ABTS, DPPH), and degree of hydrolysis were evaluated and the best genotype was selected by principal component analysis. The hydrolyzates of the chosen genotype were analyzed for its antidiabetic potential measured as inhibition of α-amylase, α-glucosidase, and dipeptidyl peptidase-4 (DPP4). Peptide profiles were obtained by liquid chromatography-mass spectrometry (UPLC-DAD-MS), and the most active peptides were analyzed by molecular docking. The average antioxidant activity of albumin hydrolyzates was higher than that of globulin hydrolyzates. ICC3761 was the selected genotype and peptides purified from the albumin hydrolyzate showed the best antioxidant activity and antidiabetic potential (FEI, FEL, FIE, FKN, FGKG, and MEE). FEI, FEL, and FIE were in the same chromatographic peak and this mixture showed the best ABTS scavenging (78.25%) and DPP4 inhibition (IC50  = 4.20 µg/ml). MEE showed the best DPPH scavenging (47%). FGKG showed the best inhibition of α-amylase (54%) and α-glucosidase (56%) and may be a competitive inhibitor based on in silico-predicted interactions with catalytic amino acids in the active site of both enzymes. These peptides could be used as nutraceutical supplements against diseases related to oxidative stress and diabetes. PRACTICAL APPLICATION: This study showed that chickpea protein hydrolyzates are good sources of peptides with antidiabetic potential, showing high antioxidant activity and inhibition of enzymes related to carbohydrate metabolism and type 2 diabetes. These hydrolyzates could be formulated in functional foods for diabetes.


Assuntos
Antioxidantes/química , Cicer/química , Hipoglicemiantes/química , Peptídeos/química , Proteínas de Plantas/química , Cromatografia Líquida , Cicer/genética , Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/química , Genótipo , Humanos , Espectrometria de Massas , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Hidrolisados de Proteína/química , Sementes/química , Sementes/genética , alfa-Amilases/química , alfa-Glucosidases/química
14.
BMC Biotechnol ; 21(1): 33, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947396

RESUMO

BACKGROUND: Amylases produced by fungi during solid-state fermentation are the most widely used commercial enzymes to meet the ever-increasing demands of the global enzyme market. The use of low-cost substrates to curtail the production cost and reuse solid wastes are seen as viable options for the commercial production of many enzymes. Applications of α-amylases in food, feed, and industrial sectors have increased over the years. Additionally, the demand for processed and ready-to-eat food has increased because of the rapid growth of food-processing industries in developing economies. These factors significantly contribute to the global enzyme market. It is estimated that by the end of 2024, the global α-amylase market would reach USD 320.1 million (Grand View Research Inc., 2016). We produced α-amylase using Aspergillus oryzae and low-cost substrates obtained from edible oil cake, such as groundnut oil cake (GOC), coconut oil cake (COC), sesame oil cake (SOC) by solid-state fermentation. We cultivated the fungus using these nutrient-rich substrates to produce the enzyme. The enzyme was extracted, partially purified, and tested for pH and temperature stability. The effect of pH, incubation period and temperature on α-amylase production using A. oryzae was optimized. Box-Behnken design (BBD) of response surface methodology (RSM) was used to optimize and determine the effects of all process parameters on α-amylase production. The overall cost economics of α-amylase production using a pilot-scale fermenter was also studied. RESULTS: The substrate optimization for α-amylase production by the Box-Behnken design of RSM showed GOC as the most suitable substrate for A. oryzae, as evident from its maximum α-amylase production of 9868.12 U/gds. Further optimization of process parameters showed that the initial moisture content of 64%, pH of 4.5, incubation period of 108 h, and temperature of 32.5 °C are optimum conditions for α-amylase production. The production increased by 11.4% (10,994.74 U/gds) by up-scaling and using optimized conditions in a pilot-scale fermenter. The partially purified α-amylase exhibited maximum stability at a pH of 6.0 and a temperature of 55 °C. The overall cost economic studies showed that the partially purified α-amylase could be produced at the rate of Rs. 622/L. CONCLUSIONS: The process parameters for enhanced α-amylase secretion were analyzed using 3D contour plots by RSM, which showed that contour lines were more oriented toward incubation temperature and pH, having a significant effect (p < 0.05) on the α-amylase activity. The optimized parameters were subsequently employed in a 600 L-pilot-scale fermenter for the α-amylase production. The substrates were rich in nutrients, and supplementation of nutrients was not required. Thus, we have suggested an economically viable process of α-amylase production using a pilot-scale fermenter.


Assuntos
Aspergillus oryzae/metabolismo , Meios de Cultura/metabolismo , Proteínas Fúngicas/biossíntese , Óleos de Plantas/metabolismo , alfa-Amilases/biossíntese , Aspergillus oryzae/genética , Aspergillus oryzae/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Meios de Cultura/química , Estabilidade Enzimática , Fermentação , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Microbiologia Industrial/instrumentação , Microbiologia Industrial/métodos , Temperatura , Resíduos/análise , alfa-Amilases/química , alfa-Amilases/genética
15.
Int J Biol Macromol ; 183: 818-830, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33965481

RESUMO

Tartary buckwheat is one of the few pseudocereals with abundant flavonoids and starch. However, there are different views on the digestibility of Tartary buckwheat starch (TBS) because of its particle size and structure. In this study, fluorescence spectrum methods and enzymatic kinetics were used to investigate the interaction between TBS /two glycosidase (α-amylase and α-glucosidase) and quercetin to explore its digestive properties and provide a perspective regarding the application of TBS in functional starch products. The results showed that the interaction between TBS and quercetin was probably weak hydrophobic force and hydrogen bonding. The inhibitory effect of quercetin on α-amylase was better than that on α-glucosidase. The half inhibitory concentrations (IC50) of quercetin to α-amylase and α- glucosidase was (270 ±â€¯3.31) and (544 ±â€¯9.01) µg/mL, respectively. The intrinsic fluorescence of two enzymes was statically quenched by forming a complex with quercetin. Quercetin also increased the microenvironment hydrophilicity of tryptophan residues in glycosidase. In vitro digestion experiment demonstrated that quercetin and TBS co-gelatinized together was more effective to inhibit TBS hydrolysis than quercetin itself alone. In the first-order kinetic and LOS model, quercetin-starch gel structure and quercetin inhibitory activity against enzymes had synergistic effects of the TBS digestion.


Assuntos
Quercetina/farmacologia , Amido/química , alfa-Amilases/metabolismo , alfa-L-Fucosidase/metabolismo , Fagopyrum , Ligação de Hidrogênio , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Cinética , Ligação Proteica , Quercetina/química , alfa-Amilases/química , alfa-L-Fucosidase/química
16.
Molecules ; 26(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916198

RESUMO

In the study, two novel compounds along with two new compounds were isolated from Grewia optiva. The novel compounds have never been reported in any plant source, whereas the new compounds are reported for the first time from the studied plant. The four compounds were characterized as: 5,5,7,7,11,13-hexamethyl-2-(5-methylhexyl)icosahydro-1H-cyclopenta[a]chrysen-9-ol (IX), docosanoic acid (X), methanetriol mano formate (XI) and 2,2'-(1,4-phenylene)bis(3-methylbutanoic acid (XII). The anticholinesterase, antidiabetic, and antioxidant potentials of these compounds were determined using standard protocols. All the isolated compounds exhibited a moderate-to-good degree of activity against acetylcholinesterases (AChE) and butyrylcholinesterase (BChE). However, compound XII was particularly effective with IC50 of 55 µg/mL (against AChE) and 60 µg/mL (against BChE), and this inhibitory activity is supported by in silico docking studies. The same compound was also effective against DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid) radicals with IC50 values of 60 and 62 µg/mL, respectively. The compound also significantly inhibited the activities of α-amylase and α-glucosidase in vitro. The IC50 values for inhibition of the two enzymes were recorded as 90 and 92 µg/mL, respectively. The in vitro potentials of compound XII to treat Alzheimer's disease (in terms of AchE and BChE inhibition), diabetes (in terms of α-amylase and α-glucosidase inhibition), and oxidative stress (in terms of free radical scavenging) suggest further in vivo investigations of the compound for assessing its efficacy, safety profile, and other parameters to proclaim the compound as a potential drug candidate.


Assuntos
Produtos Biológicos/química , Grewia/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Extratos Vegetais/química , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Sítios de Ligação , Produtos Biológicos/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Estrutura Molecular , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Ligação Proteica , Relação Estrutura-Atividade , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/química
17.
J Sci Food Agric ; 101(14): 5872-5879, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33788976

RESUMO

BACKGROUND: This study investigated the chemical profile and biological activity of Diplotaxis erucoides subsp. erucoides (L.) DC. (Brassicaceae) collected in Sicily (Italy). RESULTS: Liquid chromatography coupled with electrospray ionization and high-resolution mass spectrometry (LC-ESI/HRMS) analysis of the ethanol extract revealed the presence of 42 compounds - glucosinolates, hydroxycinnamic acids, flavonoids, and oxylipins. The extract was tested for its antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS), ferric reducing ability power (FRAP), and ß-carotene bleaching tests. Promising protection from lipid peroxidation was observed after 30 min of incubation in a ß-carotene bleaching test (IC50 of 3.32 µg mL-1 ). The inhibition of carbohydrates-hydrolyzing enzymes resulted in IC50 values of 85.18 and 92.36 µg mL-1 for α-amylase and α-glucosidase, respectively. Significant inhibition against lipase enzyme was observed (IC50 of 61.27 µg mL-1 ). CONCLUSION: Diplotaxis erucoides can be considered a potential source of antioxidant, hypoglycemic, and hypolipidemic bioactives. © 2021 Society of Chemical Industry.


Assuntos
Brassicaceae/química , Glucosinolatos/química , Oxilipinas/química , Extratos Vegetais/química , Antioxidantes/química , Cromatografia Líquida , Inibidores Enzimáticos/química , Flavonoides/química , Inibidores de Glicosídeo Hidrolases , Humanos , Espectrometria de Massas , Saladas/análise , Sicília , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/química , alfa-Glucosidases/química
18.
Molecules ; 26(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669312

RESUMO

Diabetes mellitus is a chronic disease and one of the fastest-growing health challenges of the last decades. Studies have shown that chronic low-grade inflammation and activation of the innate immune system are intimately involved in type 2 diabetes pathogenesis. Momordica charantia L. fruits are used in traditional medicine to manage diabetes. Herein, we report the purification of a new 23-O-ß-d-allopyranosyl-5ß,19-epoxycucurbitane-6,24-diene triterpene (charantoside XV, 6) along with 25ξ-isopropenylchole-5(6)-ene-3-O-ß-d-glucopyranoside (1), karaviloside VI (2), karaviloside VIII (3), momordicoside L (4), momordicoside A (5) and kuguaglycoside C (7) from an Indian cultivar of Momordica charantia. At 50 µM compounds, 2-6 differentially affected the expression of pro-inflammatory markers IL-6, TNF-α, and iNOS, and mitochondrial marker COX-2. Compounds tested for the inhibition of α-amylase and α-glucosidase enzymes at 0.87 mM and 1.33 mM, respectively. Compounds showed similar α-amylase inhibitory activity than acarbose (0.13 mM) of control (68.0-76.6%). Karaviloside VIII (56.5%) was the most active compound in the α-glucosidase assay, followed by karaviloside VI (40.3%), while momordicoside L (23.7%), A (33.5%), and charantoside XV (23.9%) were the least active compounds. To better understand the mode of binding of cucurbitane-triterpenes to these enzymes, in silico docking of the isolated compounds was evaluated with α-amylase and α-glucosidase.


Assuntos
Anti-Inflamatórios/farmacologia , Simulação por Computador , Frutas/química , Glicosídeos/química , Glicosídeos/farmacologia , Hipoglicemiantes/farmacologia , Momordica charantia/química , Triterpenos/química , Triterpenos/farmacologia , Animais , Anti-Inflamatórios/química , Bioensaio , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Glicosídeos/isolamento & purificação , Hipoglicemiantes/química , Ligantes , Camundongos , Conformação Molecular , Simulação de Acoplamento Molecular , Espectroscopia de Prótons por Ressonância Magnética , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Triterpenos/isolamento & purificação , alfa-Amilases/química , alfa-Amilases/metabolismo , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo
19.
Int J Biol Macromol ; 174: 270-277, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33529624

RESUMO

In the present study, an efficient method based on ligand fishing and high-speed counter-current chromatography (HSCCC) was established to screen, enrich and separate the active components with the α-amylase inhibitory activity from a traditional dish Toona sinensis. The active components were screened from T. sinensis by ligand fishing using the magnetic immobilized α-amylase prepared through solvothermal and crosslinking methods. HSCCC was used to separate the target compound according to the K value. As a result, a potential active compound 1,2,3,4,6-penta-O-galloyl-ß-d-glucose and a non-target compound quercetin-3-O-α-L-rhamnopyranoside were separated and identified. In-vitro experiments indicated that 1,2,3,4,6-penta-O-galloyl-ß-d-glucose had the activity against α-amylase and the IC50 value was 93.49 ± 0.80 µg/mL which was higher than that of the non-target compound. The result further confirmed the molecular fishing effect of magnetic immobilized α-amylase. The present study can not only find and separate the hypoglycemic substances in T. sinensis quickly and effectively, but also can provide a new approach for the study of natural active components.


Assuntos
Inibidores Enzimáticos/farmacologia , Taninos Hidrolisáveis/farmacologia , Toona/química , alfa-Amilases/química , Cromatografia Líquida de Alta Pressão , Distribuição Contracorrente , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Enzimas Imobilizadas/antagonistas & inibidores , Enzimas Imobilizadas/química , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/isolamento & purificação , Ligantes , Estrutura Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , alfa-Amilases/antagonistas & inibidores
20.
BMC Complement Med Ther ; 21(1): 73, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33618705

RESUMO

BACKGROUND: Elaeagnus umbellata Thunb. (autumn olive) is a high valued medicinal plant. It belongs to Elaeagnaceae family and is widely distributed in Himalayan regions of Pakistan. In the present study essential oil were extracted from the fruit of this plant and their antioxidant, anticholinesterase and antidiabetic potentials were also evaluated. METHODS: Essential oils were extracted from the fruit of E. umbellata using hydro-distillation method and were characterized by GC-MS. The extracted oil were tested for its antioxidant, anticholinesterase, and antidiabetic potentials using standard protocols. RESULTS: About 68 compounds were identified by GC-MS. The extracted oil exhibited a fairly high free radical scavenging activities against DPPH and ABTS radicals with IC50 values of 70 and 105 µg/mL respectively (for ascorbic acid, used as standard, the IC50 values were 32 and 29 µg/mL, respectively against the mentioned radicals). The essential oil also exhibited anticholinesterase activities with IC50 values of 48 and 90 µg/mL respectively against AChE and BChE (for galantamine used as standard, the IC50 values were 25 and 30 µg/mL respectively). The essential oil also exhibited antidiabetic potential with IC50 values of 120 and 110 µg/mL respectively against α-glucosidase and α-amylase (IC50 values for standard acarbose = 28 and 30 µg/mL respectively). CONCLUSION: Essential oil extracted from the fruits of E. umbellata exhibited reasonable antioxidant, anticholinesterase, and antidiabetic potentials that could be used as alternative medicine in treating diabetes and neurodegenerative disorders. However, further studies are needed to isolate responsible compounds and evaluate the observed potential in animal models.


Assuntos
Antioxidantes/química , Inibidores da Colinesterase/química , Elaeagnaceae/química , Hipoglicemiantes/química , Óleos Voláteis/química , Extratos Vegetais/química , Inibidores Enzimáticos/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Paquistão , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/química , alfa-Glucosidases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA