Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Orphanet J Rare Dis ; 19(1): 16, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238782

RESUMO

Fabry disease (FD) is a rare, X-linked lysosomal storage disorder affecting both males and females caused by genetic abnormalities in the gene encoding the enzyme α-galactosidase A. FD-affected patients represent a highly variable clinical course with first symptoms already appearing in young age. The disease causes a progressive multiple organ dysfunction affecting mostly the heart, kidneys and nervous system, eventually leading to premature death. Disease-specific management of FD includes enzyme replacement therapy with agalsidase α and ß or pharmacological oral chaperone migalastat. Migalastat is a low-molecular-mass iminosugar, that reversibly binds to active site of amenable enzyme variants, stabilizing their molecular structure and improving trafficking to the lysosome. Migalastat was approved in the EU in 2016 and is an effective therapy in the estimated 35-50% of all patients with FD with amenable GLA gene variants. This position statement is the first comprehensive review in Central and Eastern Europe of the current role of migalastat in the treatment of FD. The statement provides an overview of the pharmacology of migalastat and summarizes the current evidence from the clinical trial program regarding the safety and efficacy of the drug and its effects on organs typically involved in FD. The position paper also includes a practical guide for clinicians on the optimal selection of patients with FD who will benefit from migalastat treatment, recommendations on the optimal selection of diagnostic tests and the use of tools to identify patients with amenable GLA mutations. Areas for future migalastat clinical research have also been identified.


Assuntos
Doença de Fabry , Adulto , Masculino , Feminino , Humanos , Doença de Fabry/genética , alfa-Galactosidase/genética , alfa-Galactosidase/uso terapêutico , alfa-Galactosidase/metabolismo , 1-Desoxinojirimicina/uso terapêutico , Mutação , Rim/metabolismo
2.
J Pharmacokinet Pharmacodyn ; 50(1): 63-74, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36376611

RESUMO

Recently, a new mechanism of drug-drug interaction (DDI) was reported between agalsidase, a therapeutic protein, and migalastat, a small molecule, both of which are treatment options of Fabry disease. Migalastat is a pharmacological chaperone that stabilizes the native form of both endogenous and exogenous agalsidase. In Fabry patients co-administrated with agalsidase and migalastat, the increase in active agalsidase exposure is considered a pharmacokinetic effect of agalsidase infusion but a pharmacodynamic effect of migalastat administration, which makes this new DDI mechanism even more interesting. To quantitatively characterize the interaction between agalsidase and migalastat in human, a pharmacometric DDI model was developed using literature reported concentration-time data. The final model includes three components: a 1-compartment linear model component for migalastat; a 2-compartment linear model component for agalsidase; and a DDI component where the agalsidase-migalastat complex is formed via second order association constant kon, dissociated with first order dissociation constant koff, and distributed/eliminated with same rates as agalsidase alone, albeit the complex (i.e., bound agalsidase) has higher enzyme activity compared to free agalsidase. The final model adequately captured several key features of the unique interaction between agalsidase and migalastat, and successfully characterized the kinetics of migalastat as well as the kinetics and activities of agalsidase when both drugs were used alone or in combination following different doses. Most parameters were reasonably estimated with good precision. Because the model includes mechanistic basis of therapeutic protein and small molecule pharmacological chaperone interaction, it can potentially serve as a foundational work for DDIs with similar mechanism.


Assuntos
1-Desoxinojirimicina , alfa-Galactosidase , Humanos , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo , Mutação , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/uso terapêutico , Interações Medicamentosas
3.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163813

RESUMO

Fabry disease is an X-linked lysosomal multisystem storage disorder induced by a mutation in the alpha-galactosidase A (GLA) gene. Reduced activity or deficiency of alpha-galactosidase A (AGAL) leads to escalating storage of intracellular globotriaosylceramide (GL-3) in numerous organs, including the kidneys, heart and nerve system. The established treatment for 20 years is intravenous enzyme replacement therapy. Lately, oral chaperone therapy was introduced and is a therapeutic alternative in patients with amenable mutations. Early starting of therapy is essential for long-term improvement. This review describes chaperone therapy in Fabry disease.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Doença de Fabry/tratamento farmacológico , alfa-Galactosidase/genética , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/uso terapêutico , Doença de Fabry/genética , Doença de Fabry/metabolismo , Humanos , Masculino , Mutação , Tempo para o Tratamento , Triexosilceramidas/metabolismo , alfa-Galactosidase/metabolismo
4.
Drugs ; 81(6): 635-645, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33721270

RESUMO

Fabry disease (FD) is a rare X-linked lysosomal storage disease based on a deficiency of α-galactosidase A (AGAL) caused by mutations in the α-galactosidase A gene (GLA). The lysosomal accumulation of glycosphingolipids, especially globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3, deacylated form), leads to a multisystemic disease with progressive renal failure, cardiomyopathy with potentially malignant cardiac arrhythmias, and strokes, which considerably limits the life expectancy of affected patients. Diagnostic confirmation in male patients is based on the detection of AGAL deficiency in blood leukocytes, whereas in women, due to the potentially high residual enzymatic activity, molecular genetic detection of a causal mutation is required. Current treatment options for FD include recombinant enzyme replacement therapy (ERT) with intravenous agalsidase-alfa (0.2 mg/kg body weight) or agalsidase-beta (1 mg/kg body weight) every 2 weeks and oral chaperone therapy with migalastat (123 mg every other day), which selectively and reversibly binds to the active site of AGAL, thereby correcting the misfolding of the enzyme and allowing it to traffic to the lysosome. These therapies enable cellular Gb3 clearance and improve the burden of disease. However, in about 40% of all ERT-treated men, ERT can lead to infusion-associated reactions and the formation of neutralizing antidrug antibodies, which reduces the efficacy of therapy. In chaperone therapy, there are carriers of amenable mutations that show limited clinical success. This article provides a brief overview of the clinical picture in FD patients, diagnostic confirmation, and interdisciplinary clinical management of FD. The focus is on current and future therapeutic options.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Terapia de Reposição de Enzimas , Doença de Fabry/terapia , Isoenzimas/metabolismo , Proteínas Recombinantes/metabolismo , alfa-Galactosidase/metabolismo , 1-Desoxinojirimicina/administração & dosagem , 1-Desoxinojirimicina/uso terapêutico , Humanos , Isoenzimas/administração & dosagem , Proteínas Recombinantes/administração & dosagem , alfa-Galactosidase/administração & dosagem
5.
Clin Pharmacol Ther ; 108(2): 326-337, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32198894

RESUMO

Fabry's disease (FD) is an X-linked lysosomal storage disorder caused by the deficient activity of the lysosomal enzyme α-galactosidase A (α-Gal A) leading to intracellular accumulation of globotriaosylceramide (Gb3). Patients with amenable mutations can be treated with migalastat, a recently approved oral pharmacologic chaperone to increase endogenous α-Gal A activity. We assessed safety along with cardiovascular, renal, and patient-reported outcomes and disease biomarkers in a prospective observational multicenter study after 12 months of migalastat treatment under "real-world" conditions. Fifty-nine (28 females) patients (34 (57.6%) pretreated with enzyme replacement therapy) with amenable mutations were recruited. Migalastat was generally safe and well tolerated. Females and males presented with a reduction of left ventricular mass index (primary end point) (-7.2 and -13.7 g/m2 , P = 0.0050 and P = 0.0061). FD-specific manifestations and symptoms remained stable (all P > 0.05). Both sexes presented with a reduction of estimated glomerular filtration rate (secondary end point) (-6.9 and -5.0 mL/minute/1.73 m2 ; P = 0.0020 and P = 0.0004, respectively), which was most prominent in patients with low blood pressure (P = 0.0271). α-Gal A activity increased in male patients by 15% from 29% to 44% of the normal wild-type activity (P = 0.0106) and plasma lyso-Gb3 levels were stable in females and males (P = 0.3490 and P = 0.2009). Reevaluation of mutations with poor biochemical response revealed no marked activity increase in a zero activity background. We conclude that therapy with migalastat was generally safe and resulted in an amelioration of left ventricular mass. In terms of impaired renal function, blood pressure control seems to be an unattended important goal.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Doença de Fabry/tratamento farmacológico , alfa-Galactosidase/metabolismo , 1-Desoxinojirimicina/efeitos adversos , 1-Desoxinojirimicina/uso terapêutico , Adulto , Biomarcadores/sangue , Doença de Fabry/diagnóstico , Doença de Fabry/enzimologia , Doença de Fabry/fisiopatologia , Feminino , Predisposição Genética para Doença , Alemanha , Taxa de Filtração Glomerular/efeitos dos fármacos , Glicolipídeos/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Estudos Prospectivos , Esfingolipídeos/sangue , Fatores de Tempo , Resultado do Tratamento , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , alfa-Galactosidase/genética
6.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023956

RESUMO

Fabry disease is one of the most common lysosomal storage disorders caused by mutations in the gene encoding lysosomal α-galactosidase A (α-Gal A) and resultant accumulation of glycosphingolipids. The sugar mimetic 1-deoxygalactonojirimycin (DGJ), an orally available pharmacological chaperone, was clinically approved as an alternative to intravenous enzyme replacement therapy. The decision as to whether a patient should be treated with DGJ depends on the genetic variant within the α-galactosidase A encoding gene (GLA). A good laboratory practice (GLP)-validated cell culture-based assay to investigate the biochemical responsiveness of the variants is currently the only source available to obtain pivotal information about susceptibility to treatment. Herein, variants were defined amenable when an absolute increase in enzyme activity of ≥3% of wild type enzyme activity and a relative increase in enzyme activity of ≥1.2-fold was achieved following DGJ treatment. Efficacy testing was carried out for over 1000 identified GLA variants in cell culture. Recent data suggest that about one-third of the variants comply with the amenability criteria. A recent study highlighted the impact of inter-assay variability on DGJ amenability, thereby reducing the power of the assay to predict eligible patients. This prompted us to compare our own α-galactosidase A enzyme activity data in a very similar in-house developed assay with those from the GLP assay. In an essentially retrospective approach, we reviewed 148 GLA gene variants from our former studies for which enzyme data from the GLP study were available and added novel data for 30 variants. We also present data for 18 GLA gene variants for which no data from the GLP assay are currently available. We found that both differences in experimental biochemical data and the criteria for the classification of amenability cause inter-assay discrepancy. We conclude that low baseline activity, borderline biochemical responsiveness, and inter-assay discrepancy are alarm signals for misclassifying a variant that must not be ignored. Furthermore, there is no solid basis for setting a minimum response threshold on which a clinical indication with DGJ can be justified.


Assuntos
Substituição de Aminoácidos , Doença de Fabry/genética , alfa-Galactosidase/metabolismo , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/uso terapêutico , Bioensaio , Doença de Fabry/tratamento farmacológico , Doença de Fabry/metabolismo , Células HEK293 , Humanos , Medicina de Precisão , Reprodutibilidade dos Testes , Estudos Retrospectivos , alfa-Galactosidase/genética
7.
Mol Genet Genomic Med ; 7(9): e894, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31393666

RESUMO

BACKGROUND: Fabry disease (OMIM 301500) is an X-linked disorder caused by alpha-galactosidase A (α-Gal A) deficiency. The administration of a pharmacologic chaperone (migalastat) in Fabry patients with amenable mutations has been reported to improve or stabilize organ damages and reduce lyso-Gb3 plasma level. An increase of α-Gal A activity has been observed in vitro in cells expressing amenable GLA mutations when incubated with migalastat. The impact of the drug on α-Gal A in vivo activity has been poorly studied. METHODS: We conducted a retrospective analysis of two unrelated male Fabry patients with p.Asn215Ser (p.N215S) variant. RESULTS: We report the important increase of α-Gal A activity in blood leukocytes reaching normal ranges of activity after about 1 year of treatment with migalastat. Cardiac parameters improved or stabilized with the treatment. CONCLUSION: We confirm in vivo the effects of migalastat that have been observed in N215S carriers in vitro. The increase of α-Gal A activity may be the strongest marker for biochemical efficacy. The normalization of enzyme activity could become the new therapeutic target to achieve.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Doença de Fabry , Leucócitos/enzimologia , Mutação de Sentido Incorreto , 1-Desoxinojirimicina/administração & dosagem , Administração Oral , Substituição de Aminoácidos , Doença de Fabry/tratamento farmacológico , Doença de Fabry/enzimologia , Doença de Fabry/genética , Humanos , Masculino , Estudos Retrospectivos , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo
8.
Food Chem ; 289: 95-102, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30955678

RESUMO

Aspergillus quadrilineatus RSNK-1 produced a multi-enzymatic system containing (U/gds) ß-mannanase (1021), endo-xylanase (1 9 1), α-galactosidase (3.42), ß-xylosidase (0.07) and ß-glucosidase (0.28) on low-cost copra meal (CM) in SSF. The enzyme preparation was covalently immobilized on aluminum oxide pellets (3 mm) under statistically optimized conditions leading to 73.17% immobilization yield. The immobilized enzyme (Man-AOP) displayed enhanced thermal and pH stability. Man-AOP was characterized by FTIR, SEM and PXRD revealing a covalent interaction. The bio-conjugate was successfully recycled for mannooligosaccharide (MOS) generation from locust bean gum (LBG) up to 10 cycles, yielding an average of 0.95 mg MOS/cycle. Man-AOP was also effective in clarification of apple, kiwi, orange and peach juices and enhanced their reducing sugar content. The bio-conjugate was useful in generation of MOS from mannan and enrichment of fruit juices.


Assuntos
Aspergillus/enzimologia , Sucos de Frutas e Vegetais/análise , Oligossacarídeos/metabolismo , Óxido de Alumínio/química , Estabilidade Enzimática , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Galactanos/metabolismo , Concentração de Íons de Hidrogênio , Mananas/metabolismo , Gomas Vegetais/metabolismo , Temperatura , Xilosidases/química , Xilosidases/metabolismo , alfa-Galactosidase/química , alfa-Galactosidase/metabolismo , beta-Glucosidase/química , beta-Glucosidase/metabolismo , beta-Manosidase/química , beta-Manosidase/metabolismo
9.
J Med Genet ; 56(8): 548-556, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31010832

RESUMO

BACKGROUND: Patients with Fabry disease (FD) and amenable mutations can be treated with the chaperone migalastat to restore endogenous α-galactosidase A (AGAL) activity. However, certain amenable mutations do not respond biochemically in vivo as expected. Here, we aimed to establish a patient-specific and mutation-specific cell model to evaluate the amenability to chaperone therapy in FD. METHODS: Since current tests to determine amenability are limited to heterologous mutation expression in HEK293T cells with endogenous AGAL activity, we generated CRISPR/Cas9-mediated AGAL-deficient HEK293T cells as a basis for mutant overexpression. Furthermore, primary urinary cells from patients were isolated and immortalised as a patient-specific cell model system to evaluate the amenability to chaperone therapy. RESULTS: Under treatment (>13 months), carriers of p.N215S (n=6) showed a significant reduction of plasma lyso-Gb3 (p<0.05). Lyso-Gb3 levels in carriers of p.L294S increased (p<0.05) and two patients developed severe albuminuria. Both missense mutations were amenable in wild-type HEK293T cells (p<0.05), but presented different responses in CRISPR/Cas9-mediated AGAL knockouts and immortalised urinary cells. Chaperone incubation resulted in increased AGAL activity (p<0.0001) and intracellular globotriaosylceramide (Gb3) reduction (p<0.05) in immortalised p.N215S cells but not in p.L294S and IVS2+1 G>A cells. CONCLUSION: We conclude that repeated AGAL activity measurements in patients' white blood cells are mandatory to assess the in vivo amenability to migalastat. Plasma lyso-Gb3 might be an appropriate tool to measure the biochemical response to migalastat. Patients with low AGAL activities and increasing lyso-Gb3 levels despite in vitro amenability might not benefit sufficiently from chaperone treatment.


Assuntos
Doença de Fabry/genética , alfa-Galactosidase/genética , 1-Desoxinojirimicina/administração & dosagem , 1-Desoxinojirimicina/análogos & derivados , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia de Reposição de Enzimas/métodos , Doença de Fabry/metabolismo , Doença de Fabry/terapia , Edição de Genes , Células HEK293 , Humanos , Chaperonas Moleculares/administração & dosagem , Medicina de Precisão/métodos , Triexosilceramidas/metabolismo , alfa-Galactosidase/metabolismo
11.
Clin Pharmacol Ther ; 105(5): 1224-1233, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30506669

RESUMO

Long-term effects of migalastat therapy in clinical practice are currently unknown. We evaluated migalastat efficacy and biomarker changes in a prospective, single-center study on 14 patients with Fabry disease (55 ± 14 years; 11 men). After 1 year of open-label migalastat therapy, patients showed significant changes in alpha-galactosidase-A activity (0.06-0.2 nmol/minute/mg protein; P = 0.001), left ventricular myocardial mass index (137-130 g/m2 ; P = 0.037), and serum creatinine (0.94-1.0 mg/dL; P = 0.021), accounting for deterioration in estimated glomerular filtration rate (87-78 mL/minute/1.73 m2 ; P = 0.012). The enzymatic increase correlated with myocardial mass reduction (r = -0.546; P = 0.044) but not with renal function (r = -0.086; P = 0.770). Plasma globotriaosylsphingosine was reduced in therapy-naive patients (10.9-6.0 ng/mL; P = 0.021) and stable (9.6-12.1 ng/mL; P = 0.607) in patients switched from prior enzyme-replacement therapy. These first real-world data show that migalastat substantially increases alpha-galactosidase-A activity, stabilizes related serum biomarkers, and improves cardiac integrity in male and female patients with amenable Fabry disease mutations.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Doença de Fabry , Glicolipídeos/sangue , Miocárdio/patologia , Esfingolipídeos/sangue , alfa-Galactosidase/metabolismo , 1-Desoxinojirimicina/administração & dosagem , 1-Desoxinojirimicina/farmacocinética , Adulto , Biomarcadores/sangue , Creatinina/sangue , Monitoramento de Medicamentos/métodos , Terapia de Reposição de Enzimas/métodos , Doença de Fabry/sangue , Doença de Fabry/tratamento farmacológico , Doença de Fabry/enzimologia , Feminino , Taxa de Filtração Glomerular/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão/efeitos dos fármacos , Estudos Prospectivos , Resultado do Tratamento
12.
Poult Sci ; 97(9): 3149-3155, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29897592

RESUMO

Exogenous enzymatic supplementation of poultry feeds, including α-galactosidase and xylanase, has been shown to increase metabolically available energy, although little information has been published on the impact on amino acid digestibility. An experiment was conducted to investigate a multicarbohydrase containing α-galactosidase and xylanase on amino acid digestibility, ileal digestible energy (IDE), and CP in male broiler chicks. The experiment was a 2 × 2 (diet × enzyme) factorial arrangement with 15 replicates of 8 male broilers per replicate raised for 21 d in a battery setting. The 2 dietary treatments included a positive control (PC) and a negative control (NC) diet formulated to contain 2.5% less calculated AME and digestible amino acids. Each of these diets was fed with and without enzyme. Broilers were fed a starter diet from 0-14 d (crumble) and a grower from 14-21 d (pellet). Birds were sampled on day 21 to determine ileal amino acid digestibility, IDE, and CP digestibility. Titanium dioxide (TiO2) was used as an indigestible marker for the determination of digestibility coefficients. Total ileal amino acid digestibility was increased (P = 0.008) by 3.80% with the inclusion of enzyme. Methionine and lysine digestibility was improved (P < 0.05) with the inclusion of enzyme by 3.37% and 2.61%, respectively. Enzyme inclusion increased (P = 0.001) cysteine digestibility by 9.3%. Diet-influenced ileal amino acid digestibility with tryptophan, threonine, isoleucine, and valine digestibility being increased (P < 0.05) in the PC when compared to the NC. IDE was decreased (P = 0.037) in broilers fed the NC diet by 100 kcal/kg feed when compared to broilers fed the PC diet. Enzyme inclusion increased (P = 0.047) IDE value by 90 kcal/kg. Crude protein digestibility was not influenced by diet; however, similar improvements in CP digestibility with enzyme inclusion were observed as with energy. These data support the benefits of a multicarbohydrase containing α-galactosidase and xylanase inclusion to improve nutrient and ileal amino acid digestibility across multiple dietary nutrient profiles.


Assuntos
Galinhas/fisiologia , Digestão/fisiologia , Endo-1,4-beta-Xilanases/metabolismo , Íleo/fisiologia , alfa-Galactosidase/metabolismo , Aminoácidos/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Dieta/veterinária , Proteínas Alimentares/metabolismo , Suplementos Nutricionais/análise , Digestão/efeitos dos fármacos , Endo-1,4-beta-Xilanases/administração & dosagem , Metabolismo Energético/efeitos dos fármacos , Íleo/efeitos dos fármacos , Masculino , Distribuição Aleatória , alfa-Galactosidase/administração & dosagem
13.
Clin Pharmacol Ther ; 103(4): 703-711, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28699267

RESUMO

Lucerastat is a glucosylceramide synthase inhibitor aimed at reducing production of glycosphingolipids (GSLs), including those accumulating in Fabry disease. The safety, tolerability, pharmacodynamics, and pharmacokinetics of oral lucerastat were evaluated in an exploratory study in patients with Fabry disease. In this single-center, open-label, randomized study, 10 patients received lucerastat 1,000 mg b.i.d. for 12 weeks in addition to enzyme replacement therapy (ERT; the lucerastat group). Four patients with Fabry disease received ERT only. Eight patients reported 17 adverse events (AEs) in the lucerastat group. No clinically relevant safety abnormalities were observed. The mean (SD) levels of the plasma GSLs, glucosylceramide, lactosylceramide, and globotriaosylceramide, were significantly decreased from baseline in the lucerastat group (-49.0% (16.5%), -32.7% (13.0%), and -55.0% (10.4%), respectively). Lucerastat 1,000 mg b.i.d. was well tolerated in patients with Fabry disease over 12 weeks. A marked decrease in plasma GSLs was observed, suggesting clinical potential for lucerastat in patients with Fabry disease.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Terapia de Reposição de Enzimas/métodos , Doença de Fabry/tratamento farmacológico , alfa-Galactosidase/metabolismo , 1-Desoxinojirimicina/administração & dosagem , 1-Desoxinojirimicina/farmacocinética , Administração Oral , Adulto , Monitoramento de Medicamentos/métodos , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacocinética , Feminino , Glucosiltransferases/antagonistas & inibidores , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
14.
Arch Anim Nutr ; 71(6): 441-454, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29110578

RESUMO

Two experiments were conducted to investigate the effect of combined supplementation of α-galactosidase and xylanase on nutrient digestibility and growth performance in growing pigs. Experiment 1 had a 2 × 2 Latin square design, where eight barrows (45.0 ± 0.52 kg body weight [BW]) were fitted with a simple T-cannula in the distal ileum and received a basal diet without or with supplementation of α-galactosidase (12 U/kg diet) and xylanase (15 AXC/kg diet) within two periods of 10 d. The apparent ileal digestibility (AID) and apparent total tract digestibility of nutrients, pH, viscosity of digesta and digestive enzyme activities were assessed. In Experiment 2, a total of 432 growing pigs (initial BW 44.7 ± 0.66 kg) were allocated to four treatments. Diets were based on corn and soybean meal and had a normal or reduced nutrient level (reduced by 0.42 kJ digestible energy [DE] per kg and 0.8% crude protein). Both diets were offered without or with supplementation of α-galactosidase and xylanase. The growth performance was assessed within a 43-d feeding period, where at the end, biochemical serum indices were estimated. In Experiment 1, the enzyme-supplemented diet had a greater contents of DE and DE/gross energy ratio (p < 0.05), and a higher AID of Arg, raffinose, stachyose and arabinoxylan (p < 0.05). In Experiment 2, the low nutrient level caused lower daily gain (p < 0.05), which was partially compensated by enzyme addition. Enzyme addition also increased the serum concentration of Lys (p < 0.05). Moreover, it appears that the tested enzyme supplementation could increase dietary DE, serum total amino acid concentrations and decrease serum urea nitrogen.


Assuntos
Dieta/veterinária , Digestão/efeitos dos fármacos , Endo-1,4-beta-Xilanases/metabolismo , Sus scrofa/fisiologia , alfa-Galactosidase/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Suplementos Nutricionais/análise , Endo-1,4-beta-Xilanases/administração & dosagem , Feminino , Masculino , Glycine max/química , Sus scrofa/crescimento & desenvolvimento , Zea mays/química , alfa-Galactosidase/administração & dosagem
15.
Eur J Med Chem ; 138: 532-542, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28692917

RESUMO

The preliminary screening of two libraries of epimeric (pyrrolidin-2-yl)triazoles (14a-s and 22a-s), generated via click chemistry, allowed the rapid identification of four α-galactosidase (coffee beans) inhibitors (22b,k,p,r) and two ß-glucosidase (almond) inhibitors (14b,f) in the low µM range. The additional biological analysis of 14b,f towards ß-glucocerebrosidase (human lysosomal ß-glucosidase), as target enzyme for Gaucher disease, showed a good correlation with the inhibition results obtained for the plant (almond) enzyme. Surprisingly, although these compounds showed inhibition towards ß-glucocerebrosidase as acid hydrolase, they did not inhibit bovine liver ß-glucosidase as neutral hydrolase. In contrast to what was observed for ß-glucosidase inhibition, the coffee bean α-galactosidase inhibitors of the epimeric library (22b,k,p,r) only showed weak inhibition towards human lysosomal α-galactosidase.


Assuntos
Inibidores Enzimáticos/farmacologia , Pirrolidinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Triazóis/farmacologia , alfa-Galactosidase/antagonistas & inibidores , beta-Glucosidase/antagonistas & inibidores , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Pirrolidinas/síntese química , Pirrolidinas/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , alfa-Galactosidase/metabolismo , beta-Glucosidase/metabolismo
16.
Int J Mol Sci ; 17(12)2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27983599

RESUMO

The CRISPR/Cas9 Genome-editing system has revealed promising potential for generating gene mutation, deletion, and correction in human cells. Application of this powerful tool in Fabry disease (FD), however, still needs to be explored. Enzyme replacement therapy (ERT), a regular administration of recombinant human α Gal A (rhα-GLA), is a currently available and effective treatment to clear the accumulated Gb3 in FD patients. However, the short half-life of rhα-GLA in human body limits its application. Moreover, lack of an appropriate in vitro disease model restricted the high-throughput screening of drugs for improving ERT efficacy. Therefore, it is worth establishing a large-expanded in vitro FD model for screening potential candidates, which can enhance and prolong ERT potency. Using CRISPR/Cas9-mediated gene knockout of GLA in HEK-293T cells, we generated GLA-null cells to investigate rhα-GLA cellular pharmacokinetics. The half-life of administrated rhα-GLA was around 24 h in GLA-null cells; co-administration of proteasome inhibitor MG132 and rhα-GLA significantly restored the GLA enzyme activity by two-fold compared with rhα-GLA alone. Furthermore, co-treatment of rhα-GLA/MG132 in patient-derived fibroblasts increased Gb3 clearance by 30%, compared with rhα-GLA treatment alone. Collectively, the CRISPR/Cas9-mediated GLA-knockout HEK-293T cells provide an in vitro FD model for evaluating the intracellular pharmacokinetics of the rhα-GLA as well as for screening candidates to prolong rhα-GLA potency. Using this model, we demonstrated that MG132 prolongs rhα-GLA half-life and enhanced Gb3 clearance, shedding light on the direction of enhancing ERT efficacy in FD treatment.


Assuntos
Sistemas CRISPR-Cas/genética , Avaliação Pré-Clínica de Medicamentos , Doença de Fabry/tratamento farmacológico , Técnicas de Inativação de Genes , alfa-Galactosidase/metabolismo , Antígenos Glicosídicos Associados a Tumores/metabolismo , Sequência de Bases , Morte Celular/efeitos dos fármacos , Estabilidade Enzimática/efeitos dos fármacos , Fibroblastos/metabolismo , Edição de Genes , Marcação de Genes , Células HEK293 , Humanos , Espaço Intracelular/metabolismo , Leupeptinas/administração & dosagem , Leupeptinas/farmacologia , Modelos Biológicos , Proteínas Recombinantes/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
17.
PLoS One ; 10(8): e0134341, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26252393

RESUMO

UNLABELLED: Migalastat HCl (AT1001, 1-Deoxygalactonojirimycin) is an investigational pharmacological chaperone for the treatment of α-galactosidase A (α-Gal A) deficiency, which leads to Fabry disease, an X-linked, lysosomal storage disorder. The currently approved, biologics-based therapy for Fabry disease is enzyme replacement therapy (ERT) with either agalsidase alfa (Replagal) or agalsidase beta (Fabrazyme). Based on preclinical data, migalastat HCl in combination with agalsidase is expected to result in the pharmacokinetic (PK) enhancement of agalsidase in plasma by increasing the systemic exposure of active agalsidase, thereby leading to increased cellular levels in disease-relevant tissues. This Phase 2a study design consisted of an open-label, fixed-treatment sequence that evaluated the effects of single oral doses of 150 mg or 450 mg migalastat HCl on the PK and tissue levels of intravenously infused agalsidase (0.2, 0.5, or 1.0 mg/kg) in male Fabry patients. As expected, intravenous administration of agalsidase alone resulted in increased α-Gal A activity in plasma, skin, and peripheral blood mononuclear cells (PBMCs) compared to baseline. Following co-administration of migalastat HCl and agalsidase, α-Gal A activity in plasma was further significantly increased 1.2- to 5.1-fold compared to agalsidase administration alone, in 22 of 23 patients (95.6%). Importantly, similar increases in skin and PBMC α-Gal A activity were seen following co-administration of migalastat HCl and agalsidase. The effects were not related to the administered migalastat HCl dose, as the 150 mg dose of migalastat HCl increased α-Gal A activity to the same extent as the 450 mg dose. Conversely, agalsidase had no effect on the plasma PK of migalastat. No migalastat HCl-related adverse events or drug-related tolerability issues were identified. TRIAL REGISTRATION: ClinicalTrials.gov NCT01196871.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Doença de Fabry/tratamento farmacológico , Doença de Fabry/enzimologia , Isoenzimas/uso terapêutico , alfa-Galactosidase/metabolismo , 1-Desoxinojirimicina/administração & dosagem , 1-Desoxinojirimicina/sangue , 1-Desoxinojirimicina/farmacocinética , 1-Desoxinojirimicina/uso terapêutico , Administração Oral , Adulto , Área Sob a Curva , Demografia , Doença de Fabry/sangue , Humanos , Bombas de Infusão , Isoenzimas/administração & dosagem , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes , Pele/enzimologia , alfa-Galactosidase/administração & dosagem , alfa-Galactosidase/sangue , alfa-Galactosidase/uso terapêutico
18.
Mol Ther ; 23(3): 456-64, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25409744

RESUMO

Lysosomal storage disorders (LSD) are a group of heterogeneous diseases caused by compromised enzyme function leading to multiple organ failure. Therapeutic approaches involve enzyme replacement (ERT), which is effective for a substantial fraction of patients. However, there are still concerns about a number of issues including tissue penetrance, generation of host antibodies against the therapeutic enzyme, and financial aspects, which render this therapy suboptimal for many cases. Treatment with pharmacological chaperones (PC) was recognized as a possible alternative to ERT, because a great number of mutations do not completely abolish enzyme function, but rather trigger degradation in the endoplasmic reticulum. The theory behind PC is that they can stabilize enzymes with remaining function, avoid degradation and thereby ameliorate disease symptoms. We tested several compounds in order to identify novel small molecules that prevent premature degradation of the mutant lysosomal enzymes α-galactosidase A (for Fabry disease (FD)) and acid α-glucosidase (GAA) (for Pompe disease (PD)). We discovered that the expectorant Ambroxol when used in conjunction with known PC resulted in a significant enhancement of mutant α-galactosidase A and GAA activities. Rosiglitazone was effective on α-galactosidase A either as a monotherapy or when administered in combination with the PC 1-deoxygalactonojirimycin. We therefore propose both drugs as potential enhancers of pharmacological chaperones in FD and PD to improve current treatment strategies.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Ambroxol/farmacologia , Ativadores de Enzimas/farmacologia , Lisossomos/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , alfa-Galactosidase/genética , alfa-Glucosidases/genética , 1-Desoxinojirimicina/farmacologia , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Bezafibrato/farmacologia , Doença de Fabry/tratamento farmacológico , Doença de Fabry/enzimologia , Expressão Gênica , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Doença de Depósito de Glicogênio Tipo II/enzimologia , Células HEK293 , Humanos , Leupeptinas/farmacologia , Lisossomos/metabolismo , Pioglitazona , Plasmídeos/química , Plasmídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Estabilidade Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tiazolidinedionas/farmacologia , Transfecção , alfa-Galactosidase/metabolismo , alfa-Glucosidases/metabolismo
19.
Orphanet J Rare Dis ; 6: 66, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-22004918

RESUMO

BACKGROUND: Fabry disease is a rare disorder caused by a large variety of mutations in the gene encoding lysosomal alpha-galactosidase. Many of these mutations are unique to individual families. Fabry disease can be treated with enzyme replacement therapy, but a promising novel strategy relies on small molecules, so called "pharmacological chaperones", which can be administered orally. Unfortunately only 42% of genotypes respond to pharmacological chaperones. RESULTS: A procedure to predict which genotypes responsive to pharmacological chaperones in Fabry disease has been recently proposed. The method uses a position-specific substitution matrix to score the mutations. Using this method, we have screened public databases for predictable responsive cases and selected nine representative mutations as yet untested with pharmacological chaperones. Mutant lysosomal alpha galactosidases were produced by site directed mutagenesis and expressed in mammalian cells. Seven out of nine mutations responded to pharmacological chaperones. Nineteen other mutations that were tested with pharmacological chaperones, but were not included in the training of the predictive method, were gathered from literature and analyzed in silico. In this set all five mutations predicted to be positive were responsive to pharmacological chaperones, bringing the percentage of responsive mutations among those predicted to be positive and not used to train the classifier to 86% (12/14). This figure differs significantly from the percentage of responsive cases observed among all the Fabry mutants tested so far. CONCLUSIONS: In this paper we provide experimental support to an "in silico" method designed to predict missense mutations in the gene encoding lysosomal alpha galactosidase responsive to pharmacological chaperones. We demonstrated that responsive mutations can be predicted with a low percentage of false positive cases. Most of the mutations tested to validate the method were described in the literature as associated to classic or mild classic phenotype. The analysis can provide a guideline for the therapy with pharmacological chaperones supported by experimental results obtained in vitro. We are aware that our results were obtained in vitro and cannot be translated straightforwardly into benefit for patients, but need to be validated by clinical trials.


Assuntos
1-Desoxinojirimicina/farmacologia , Doença de Fabry/tratamento farmacológico , Chaperonas Moleculares/farmacologia , Mutação de Sentido Incorreto , alfa-Galactosidase/efeitos dos fármacos , alfa-Galactosidase/genética , 1-Desoxinojirimicina/uso terapêutico , Animais , Sequência de Bases , Células COS/metabolismo , Domínio Catalítico , Chlorocebus aethiops , Doença de Fabry/enzimologia , Doença de Fabry/genética , Feminino , Humanos , Masculino , Modelos Moleculares , Chaperonas Moleculares/uso terapêutico , Dados de Sequência Molecular , Muramidase , Mutagênese Sítio-Dirigida , Valor Preditivo dos Testes , alfa-Galactosidase/metabolismo
20.
J Biochem ; 149(2): 161-70, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20961863

RESUMO

Fabry disease is a lysosomal storage disorder caused by an α-galactosidase A (α-Gal A) deficiency and resulting in the accumulation of glycosphingolipids, predominantly globotriaosylceramide (Gb3). A transgenic mouse expressing the human α-Gal A R301Q mutant in an α-Gal A-knockout background (TgM/KO) should be useful for studying active-site-specific chaperone (ASSC) therapy for Fabry disease. However, the Gb3 content in the heart tissue of this mouse was too low to detect an ASSC-induced effect. To increase the Gb3 levels in mouse organs, we created transgenic mice (TgG3S) expressing human α1,4-galactosyltransferase (Gb3 synthase). High levels of Gb3 were observed in all major organs of the TgG3S mouse. A TgG3S (+/-)M(+/-)/KO mouse was prepared by cross-breeding the TgG3S and TgM/KO mice and the Gb3 content in the heart of the TgG3S(+/-)M(+/-)/KO mouse was 1.4 µg/mg protein, higher than in the TgM(+/-)/KO (<0.1 µg/mg protein). Treatment with an ASSC, 1-deoxygalactonojirimycin, caused a marked induction of α-Gal A activity and a concomitant reduction of the Gb3 content in the TgG3S(+/-) M(+/-)/KO mouse organs. These data indicated that the TgG3S(+/-) M(+/-)/KO mouse was suitable for studying ASSC therapy for Fabry disease, and that the TgG3S mouse would be useful for studying the effect of high Gb3 levels in mouse organs.


Assuntos
Doença de Fabry/enzimologia , Galactosiltransferases/metabolismo , Triexosilceramidas/metabolismo , alfa-Galactosidase/metabolismo , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacologia , Animais , Cruzamentos Genéticos , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Doença de Fabry/tratamento farmacológico , Doença de Fabry/genética , Feminino , Galactosiltransferases/genética , Humanos , Rim/química , Fígado/química , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Chaperonas Moleculares/farmacologia , Baço/química , Regulação para Cima/efeitos dos fármacos , alfa-Galactosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA