Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 984
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 523, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630183

RESUMO

BACKGROUND: In recent decades, phytotherapy has remained as a key therapeutic option for the treatment of various cancers. Evodiamine, an excellent phytocompound from Evodia fructus, exerts anticancer activity in several cancers by modulating drug resistance. However, the role of evodiamine in cisplatin-resistant NSCLC cells is not clear till now. Therefore, we have used evodiamine as a chemosensitizer to overcome cisplatin resistance in NSCLC. METHODS: Here, we looked into SOX9 expression and how it affects the cisplatin sensitivity of cisplatin-resistant NSCLC cells. MTT and clonogenic assays were performed to check the cell proliferation. AO/EtBr and DAPI staining, ROS measurement assay, transfection, Western blot analysis, RT-PCR, Scratch & invasion, and comet assay were done to check the role of evodiamine in cisplatin-resistant NSCLC cells. RESULTS: SOX9 levels were observed to be higher in cisplatin-resistant A549 (A549CR) and NCI-H522 (NCI-H522CR) compared to parental A549 and NCI-H522. It was found that SOX9 promotes cisplatin resistance by regulating ß-catenin. Depletion of SOX9 restores cisplatin sensitivity by decreasing cell proliferation and cell migration and inducing apoptosis in A549CR and NCI-H522CR. After evodiamine treatment, it was revealed that evodiamine increases cisplatin-induced cytotoxicity in A549CR and NCI-H522CR cells through increasing intracellular ROS generation. The combination of both drugs also significantly inhibited cell migration by inhibiting epithelial to mesenchymal transition (EMT). Mechanistic investigation revealed that evodiamine resensitizes cisplatin-resistant cells toward cisplatin by decreasing the expression of SOX9 and ß-catenin. CONCLUSION: The combination of evodiamine and cisplatin may be a novel strategy for combating cisplatin resistance in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Quinazolinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/farmacologia , beta Catenina , Transição Epitelial-Mesenquimal , Espécies Reativas de Oxigênio , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Morte Celular , Fatores de Transcrição SOX9/genética
2.
Acta Cir Bras ; 39: e391524, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629649

RESUMO

PURPOSE: Pre-eclampsia (PE) is a pregnancy-related complication. Eucommia is effective in the treatment of hypertensive disorders in pregnancy, but the specific effects and possible mechanisms of Eucommia granules (EG) in PE remain unknown. The aim of this study was to investigate the effects and possible mechanisms of EG in PE rats. METHODS: Pregnant Sprague Dawley rats were divided into five groups (n = 6): the control group, the model group, the low-dose group, the medium-dose group, and the high-dose group of EG. The PE model was established by subcutaneous injection of levonitroarginine methyl ester. Saline was given to the blank and model groups, and the Eucommia granules were given by gavage to the remaining groups. Blood pressure and urinary protein were detected. The body length and weight of the pups and the weight of the placenta were recorded. Superoxide dismutase (SOD) activity and levels of malondialdehyde (MDA), placental growth factor (PIGF), and soluble vascular endothelial growth factor receptor-1 (sFIt-1) were measured in the placenta. Pathological changes were observed by hematoxylin-eosin staining. Wnt/ß-catenin pathway-related protein expression was detected using Western blot. RESULTS: Compared with the model group, the PE rats treated with EG had lower blood pressure and urinary protein. The length and weight of the pups and placental weight were increased. Inflammation and necrosis in the placental tissue was improved. SOD level increased, MDA content and sFIt-1/PIGF ratio decreased, and Wnt/ß-catenin pathway-related protein expression level increased. Moreover, the results of EG on PE rats increased with higher doses of EG. CONCLUSIONS: EG may activate the Wnt/ß-catenin pathway and inhibit oxidative stress, inflammation, and vascular endothelial injury in PE rats, thereby improving the perinatal prognosis of preeclamptic rats. EG may inhibit oxidative stress, inflammation, and vascular endothelial injury through activation of the Wnt/ß-catenin pathway in preeclampsia rats, thereby improving perinatal outcomes in PE rats.


Assuntos
Pré-Eclâmpsia , Complicações na Gravidez , Humanos , Ratos , Feminino , Gravidez , Animais , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Placenta , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/metabolismo , beta Catenina/metabolismo , Fator de Crescimento Placentário/metabolismo , Fator de Crescimento Placentário/farmacologia , Fator de Crescimento Placentário/uso terapêutico , Estresse Oxidativo , Complicações na Gravidez/metabolismo , Inflamação/patologia , Superóxido Dismutase/metabolismo
3.
Chin J Nat Med ; 22(4): 329-340, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658096

RESUMO

The management of colorectal cancer (CRC) poses a significant challenge, necessitating the development of innovative and effective therapeutics. Our research has shown that notoginsenoside Ft1 (Ng-Ft1), a small molecule, markedly inhibits subcutaneous tumor formation in CRC and enhances the proportion of CD8+ T cells in tumor-bearing mice, thus restraining tumor growth. Investigation into the mechanism revealed that Ng-Ft1 selectively targets the deubiquitination enzyme USP9X, undermining its role in shielding ß-catenin. This leads to a reduction in the expression of downstream effectors in the Wnt signaling pathway. These findings indicate that Ng-Ft1 could be a promising small-molecule treatment for CRC, working by blocking tumor progression via the Wnt signaling pathway and augmenting CD8+ T cell prevalence within the tumor environment.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Colorretais , Ubiquitina Tiolesterase , Via de Sinalização Wnt , Animais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Camundongos , Humanos , Via de Sinalização Wnt/efeitos dos fármacos , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , beta Catenina/metabolismo , Camundongos Endogâmicos BALB C
4.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1266-1274, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621974

RESUMO

This paper investigates the intervention effect and mechanism of Banxia Xiexin Decoction(BXD) on colitis-associated colorectal cancer(CAC) infected with Fusobacterium nucleatum(Fn). C57BL/6 mice were randomly divided into a control group, Fn group, CAC group [azoxymethane(AOM)/dextran sulfate sodium salt(DSS)](AOM/DSS), model group, and BXD group. Except for the control and AOM/DSS groups, the mice in the other groups were orally administered with Fn suspension twice a week. The AOM/DSS group, model group, and BXD group were also injected with a single dose of 10 mg·kg~(-1) AOM combined with three cycles of 2.5% DSS taken intragastrically. The BXD group received oral administration of BXD starting from the second cycle until the end of the experiment. The general condition and weight changes of the mice were monitored during the experiment, and the disease activity index(DAI) was calculated. At the end of the experiment, the colon length and weight of the mice in each group were compared. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in the colon tissue. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of interleukin(IL)-2, IL-4, and IL-6 inflammatory factors in the serum. Immunohistochemistry(IHC) was used to detect the expression of Ki67, E-cadherin, and ß-catenin in the colon tissue. Western blot was used to detect the protein content of Wnt3a, ß-catenin, E-cadherin, annexin A1, cyclin D1, and glycogen synthase kinase-3ß(GSK-3ß) in the colon tissue. The results showed that compared with the control group, the Fn group had no significant lesions. The mice in the AOM/DSS group and model group had decreased body weight, increased DAI scores, significantly increased colon weight, and significantly shortened colon length, with more significant lesions in the model group. At the same time, the colon histology of the model group showed more severe adenomas, inflammatory infiltration, and cellular dysplasia. The levels of IL-4 and IL-6 in the serum were significantly increased, while the IL-2 content was significantly decreased. The IHC results showed low expression of E-cadherin and high expression of Ki67 and ß-catenin in the model group, with a decreased protein content of E-cadherin and GSK-3ß and an increased protein content of Wnt3a, ß-catenin, annexin A1, and cyclin D1. After intervention with BXD, the body weight of the mice increased; the DAI score decreased; the colon length increased, and the tumor decreased. The histopathology showed reduced tumor proliferation and reduced inflammatory infiltration. The levels of IL-6 and IL-4 in the serum were significantly decreased, while the IL-2 content was increased. Meanwhile, the expression of E-cadherin was upregulated, and that of Ki67 and ß-catenin was downregulated. The protein content of E-cadherin and GSK-3ß increased, while that of Wnt3a, ß-catenin, annexin A1, and cyclin D1 decreased. In conclusion, BXD can inhibit CAC infected with Fn, and its potential mechanism may be related to the inhibition of Fn binding to E-cadherin, the decrease in annexin A1 protein level, and the regulation of the Wnt/ß-catenin pathway.


Assuntos
Anexina A1 , Neoplasias Associadas a Colite , Colite , Medicamentos de Ervas Chinesas , Camundongos , Animais , Colite/complicações , Colite/tratamento farmacológico , Colite/genética , beta Catenina/genética , beta Catenina/metabolismo , Ciclina D1/metabolismo , Fusobacterium nucleatum/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Antígeno Ki-67/metabolismo , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Camundongos Endogâmicos C57BL , Caderinas/metabolismo , Peso Corporal , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Azoximetano
5.
J Tradit Chin Med ; 44(2): 251-259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504531

RESUMO

OBJECTIVE: To investigate the synergistic effects of polyphyllin I (PPI) combined with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on the growth of osteosarcoma cells through downregulating the Wnt/ß-catenin signaling pathway. METHODS: Cell viability, apoptosis and cell cycle distribution were examined using cell counting kit-8 and flow cytometry assays. The morphology of cancer cells was observed with inverted phase contrast microscope. The migration and invasion abilities were examined by xCELLigence real time cell analysis DP system and transwell assays. The expressions of poly (adenosine diphosphate-ribose) polymerase, C-Myc, Cyclin B1, cyclin-dependent kinases 1, N-cadherin, Vimentin, Active-ß-catenin, ß-catenin, p-glycogen synthase kinase 3ß (GSK-3ß) and GSK-3ß were determined by Western blotting assay. RESULTS: PPI sensitized TRAIL-induced decrease of viability, migration and invasion, as well as increase of apoptosis and cell cycle arrest of MG-63 and U-2 OS osteosarcoma cells. The synergistic effect of PPI with TRAIL in inhibiting the growth of osteosarcoma cells was at least partially realized through the inactivation of Wnt/ß-catenin signaling pathway. CONCLUSION: The combination of PPI and TRAIL is potentially a novel treatment strategy of osteosarcoma.


Assuntos
Neoplasias Ósseas , Diosgenina/análogos & derivados , Osteossarcoma , Humanos , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Ligantes , Linhagem Celular Tumoral , Proliferação de Células , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Ciclo Celular , Apoptose , Fator de Necrose Tumoral alfa/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Movimento Celular
6.
Fish Shellfish Immunol ; 148: 109521, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552889

RESUMO

In mammals, ß-catenin participates in innate immune process through interaction with NF-κB signaling pathway. However, its role in teleost immune processes remains largely unknown. We aimed to clarify the function of ß-catenin in the natural defense mechanism of Qi river crucian carp (Carassius auratus). ß-catenin exhibited a ubiquitous expression pattern in adult fish, as indicated by real-time PCR analysis. Following lipopolysaccharide (LPS), Polyinosinic-polycytidylic acid (polyI: C) and Aeromonas hydrophila (A. hydrophila) challenges, ß-catenin increased in gill, intestine, liver and kidney, indicating that ß-catenin likely plays a pivotal role in the immune response against pathogen infiltration. Inhibition of the ß-catenin pathway using FH535, an inhibitor of Wnt/ß-catenin pathway, resulting in pathological damage of the gill, intestine, liver and kidney, significant decrease of innate immune factors (C3, defb3, LYZ-C, INF-γ), upregulation of inflammatory factors (NF-κB, TNF-α, IL-1, IL-8), and downregulation of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) activities, increase of Malondialdehyde (MDA) content. Following A. hydrophila invasion, the mortality rate in the FH535 treatment group exceeded that of the control group. In addition, the diversity of intestinal microflora decreased and the community structure was uneven after FH535 treatment. In summary, our findings strongly suggest that ß-catenin plays a vital role in combating pathogen invasion and regulating intestinal flora in Qi river crucian carp.


Assuntos
Carpas , Doenças dos Peixes , Microbioma Gastrointestinal , Infecções por Bactérias Gram-Negativas , Sulfonamidas , Animais , Carpa Dourada/genética , Carpa Dourada/metabolismo , Carpas/genética , Carpas/metabolismo , NF-kappa B , Rios , beta Catenina/genética , Qi , Imunidade Inata/genética , Antioxidantes , Aeromonas hydrophila/fisiologia , Proteínas de Peixes , Infecções por Bactérias Gram-Negativas/veterinária , Mamíferos/metabolismo
7.
BMC Vet Res ; 20(1): 109, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500165

RESUMO

BACKGROUND: Endometritis is a common bovine postpartum disease. Rapid endometrial repair is beneficial for forming natural defense barriers and lets cows enter the next breeding cycle as soon as possible. Selenium (Se) is an essential trace element closely related to growth and development in animals. This study aims to observe the effect of Se on the proliferation of bovine endometrial epithelial cells (BEECs) induced by lipopolysaccharide (LPS) and to elucidate the possible underlying mechanism. RESULTS: In this study, we developed a BEECs damage model using LPS. Flow cytometry, cell scratch test and EdU proliferation assay were used to evaluate the cell cycle, migration and proliferation. The mRNA transcriptions of growth factors were detected by quantitative reverse transcription-polymerase chain reaction. The activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Wnt/ß-catenin pathways were detected by Western blotting and immunofluorescence. The results showed that the cell viability and BCL-2/BAX protein ratio were significantly decreased, and the cell apoptosis rate was significantly increased in the LPS group. Compared with the LPS group, Se promoted cell cycle progression, increased cell migration and proliferation, and significantly increased the gene expressions of TGFB1, TGFB3 and VEGFA. Se decreased the BCL-2/BAX protein ratio, promoted ß-catenin translocation from the cytoplasm to the nucleus and activated the Wnt/ß-catenin and PI3K/AKT signaling pathways inhibited by LPS. CONCLUSIONS: In conclusion, Se can attenuate LPS-induced damage to BEECs and promote cell proliferation and migration in vitro by enhancing growth factors gene expression and activating the PI3K/AKT and Wnt/ß-catenin signaling pathways.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Selênio , Feminino , Bovinos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Selênio/farmacologia , Selênio/metabolismo , beta Catenina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína X Associada a bcl-2/farmacologia , Via de Sinalização Wnt , Células Epiteliais , Proliferação de Células , Apoptose
8.
Phytomedicine ; 128: 155338, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520835

RESUMO

BACKGROUND: Liver cancer, one of the most common types of cancer worldwide, accounts for millions of cases annually. With its multi-target and wide-ranging therapeutic effects, traditional Chinese medicine has emerged as a potential approach for treating various tumors. Codonopsis pilosula, a traditional herb, is known for its anti-inflammatory and antioxidant properties. In this study, we investigated the potential molecular mechanisms of Codonopsis pilosula in regulating the inhibition of CDK1 and the modulation of PDK1/ß-catenin, which are involved in hepatocellular carcinoma growth and metastasis. STUDY DESIGN/METHODS: Firstly, we screened the active chemical constituents of Codonopsis pilosula and identified their respective target proteins using the Herb database. Then, we applied the GeneCards database and transcriptome sequencing analysis to screen for critical genes associated with the occurrence and development of liver cancer. The intersection of the target proteins and disease-related genes was used to determine the potential targets of Codonopsis pilosula in hepatocellular carcinoma. Protein-protein interaction analysis and GO/KEGG analysis were subsequently performed to uncover the pathways through which Codonopsis pilosula acts on liver cancer. The Huh-7 cell line, exhibiting the highest sensitivity to Codonopsis pilosula polysaccharide solution (CPP) intervention, was chosen for subsequent studies. Cell viability was evaluated using the CCK-8 assay, colony formation assay was conducted to determine cell proliferation capacity, flow cytometry was used to analyze cell cycle, TUNEL staining was performed to assess cell apoptosis, scratch assay was carried out to evaluate cell migration ability, the expression of EMT-related proteins was detected and analyzed, and cell sphere formation assay was conducted to investigate cell stemness. Finally, a liver cancer animal model was established, and different doses of CPP were administered via gavage the next day. The expression levels of CDK1, PDK1, and ß-catenin in mouse liver tissues were detected and analyzed, immunohistochemistry staining was performed to assess the expression of tumor cell proliferation-related proteins Ki67 and PCNA in mouse xenografts, and TUNEL staining was carried out to evaluate cell apoptosis in mouse liver tissues. After intervention with CDK1 expression, the expression levels of CDK1, PDK1, and ß-catenin proteins and mRNA in each group of cells were detected using Western blot and RT-qPCR. RESULTS: Through network pharmacology analysis, transcriptome sequencing, and bioinformatics analysis, 35 target genes through which Codonopsis pilosula acts on liver cancer were identified. Among them, CDK1, with the highest degree in the PPI network, was considered an essential target protein for Codonopsis pilosula in treating liver cancer. In vitro cell experiments revealed that CPP could inhibit the expression of CDK1/PDK1/ß-catenin signaling axis factors, suppress cell proliferation, decrease cell migration ability, influence the EMT process, and reduce cell stemness by inhibiting CDK1 and affecting the PDK1/ß-catenin signaling axis. Similarly, in vivo experiments demonstrated that CPP could regulate the CDK1/PDK1/ß-catenin signaling axis, inhibit tumor growth, and induce cell apoptosis. CONCLUSION: Codonopsis pilosula may inhibit hepatocellular carcinoma growth by suppressing CDK1 and affecting the PDK1/ß-catenin signaling axis, limiting cell EMT and reducing cell stemness. These findings provide insights into the potential therapeutic role of Codonopsis pilosula in liver cancer.


Assuntos
Proteína Quinase CDC2 , Carcinoma Hepatocelular , Codonopsis , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Animais , Humanos , Codonopsis/química , Linhagem Celular Tumoral , Proteína Quinase CDC2/metabolismo , Camundongos , Proliferação de Células/efeitos dos fármacos , beta Catenina/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Camundongos Nus , Camundongos Endogâmicos BALB C , Masculino , Movimento Celular/efeitos dos fármacos , Piruvato Desidrogenase Quinase de Transferência de Acetil , Ensaios Antitumorais Modelo de Xenoenxerto , Medicamentos de Ervas Chinesas/farmacologia
9.
Phytomedicine ; 128: 155261, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493716

RESUMO

BACKGROUND: Recurrence and metastasis are the main causes of disease deterioration in colorectal cancer (CRC) patients, yet efficient therapeutic strategies are lacking. Natural compounds for efficient antitumour therapeutics are becoming increasingly prominent. Kaempferol, one of the main components of flavonoids in plants, displays a variety of pharmacological activities. Our preliminary experiments suggested that kaempferol could inhibit CRC metastasis and is significantly associated with the ß-catenin signalling pathway. Moreover, we also defined the regulatory roles of JMJD2C in ß-catenin signalling in our previous work. PURPOSE: This study aims to reveal the mechanism by which kaempferol inhibits CRC progression and regulates the JMJD2C/ß-catenin signalling pathway. METHODS: The migratory capabilities of CRC cells after kaempferol intervention were measured by scratch wound healing and transwell assays. Circ_0000345 knockdown CRC stable cell lines were generated by lentivirus infection. The possible mechanism of kaempferol on circ_0000345 was verified by molecular-protein docking and verification program cellular thermal shift assay (CETSA). A dual luciferase reporter gene assay was carried out for the targeting relationship among circ_0000345, miR-205-5p and JMJD2C. Fluorescence in situ hybridization (FISH) was performed to determine the expression of circ_0000345 in tumour tissues. A pulmonary metastatic model of CRC in vitro was built to assess the antimetastatic effect and mechanism of kaempferol in vivo. RESULTS: In vitro, kaempferol inhibits the ability to migrate of CRC cells by reducing the activation of the JMJD2C/ß-catenin signalling pathway. MiR-205-5p is a key bridge for kaempferol to inhibit the expression of JMJD2C. The function of miR-205-5p is impeded by circ_0000345, which shows higher expression levels in human metastatic CRC tissues than nonmetastatic CRC tissues, and its formation is regulated by the RNA-binding proteins HNRNPK and HNRNPL. Mechanistically, kaempferol physically interacts with HNRNPK and HNRNPL to suppress JMJD2C by downregulating the expression of circ_0000345. In vivo, kaempferol suppresses CRC lung metastasis. Kaempferol inhibits the activation of JMJD2C/ß-catenin signalling through reducing the expression of circ_0000345 in the CRC lung metastasis model. CONCLUSION: Circ_0000345 enhances activation of the JMJD2C/ß-catenin signalling pathway through miR-205-5p to promote CRC metastasis. Kaempferol inhibits CRC metastasis through the circ_0000345-mediated JMJD2C/ß-catenin signalling pathway, and this effect is influenced as a direct consequence of the binding of kaempferol with HNRNPK and HNRNPL. This provides promising therapeutic and/or adjuvant agents for advanced CRC and sheds light on the multifaceted role of phytomedicine in cancer.


Assuntos
Neoplasias Colorretais , Histona Desmetilases com o Domínio Jumonji , Quempferóis , beta Catenina , Quempferóis/farmacologia , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , beta Catenina/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , RNA Circular/metabolismo , RNA Circular/genética , Transdução de Sinais/efeitos dos fármacos , Camundongos Nus , Camundongos Endogâmicos BALB C , Masculino , MicroRNAs/metabolismo , MicroRNAs/genética , Camundongos , Simulação de Acoplamento Molecular
10.
Phytomedicine ; 126: 155462, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394734

RESUMO

BACKGROUND: Cetuximab, an inhibitor targeting EGFR, is widely applied in clinical management of colorectal cancer (CRC). Nevertheless, drug resistance induced by KRAS-mutations limits cetuximab's anti-cancer effectiveness. Furthermore, the persistent activation of EGFR-independent AKT is another significant factor in cetuximab resistance. Nevertheless, the mechanism that EGFR-independent AKT drives cetuximab resistance remains unclear. Thus, highlighting the need to optimize therapies to overcome cetuximab resistance and also to explore the underlying mechanism. PURPOSE: This work aimed to investigate whether and how andrographolide enhance the therapeutic efficacy of cetuximab in KRAS-mutant CRC cells by modulating AKT. METHODS: The viabilities of CRC cell lines were analyzed by CCK-8. The intracellular proteins phosphorylation levels were investigated by Human Phospho-kinase Antibody Array analysis. Knockdown and transfection of PDGFRß were used to evaluate the role of andrographolide on PDGFRß. The western blotting was used to investigate Wnt/ß-catenin pathways, PI3K/AKT, and EMT in KRAS-mutant CRC cells. The animal models including subcutaneous tumor and lung metastasis were performed to assess tumor response to therapy in vivo. RESULTS: Andrographolide was demonstrated to decrease the expression of PI3K and AKT through targeting PDGFRß and EGFR, and it enhanced cetuximab effect on KRAS-mutant CRC cells by this mechanism. Meanwhile, andrographolide helped cetuximab to inhibit Wnt/ß-catenin, CRC cell migration and reduced Vimentin expression, while increasing that of E-cadherin. Lastly, co-treatment with cetuximab and andrographolide reduced the growth of KRAS-mutant tumors and pulmonary metastases in vivo. CONCLUSIONS: Our findings suggest that andrographolide can overcome the KRAS-mutant CRC cells' resistance to cetuximab through inhibiting the EGFR/PI3K/AKT and PDGFRß /AKT signaling pathways. This research provided a possible theory that andrographolide sensitizes KRAS-mutant tumor to EGFR TKI.


Assuntos
Neoplasias Colorretais , Diterpenos , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Cetuximab/farmacologia , Cetuximab/genética , Cetuximab/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , beta Catenina/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores ErbB/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Via de Sinalização Wnt , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Mutação
11.
Phytochemistry ; 220: 114019, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346546

RESUMO

Seven undescribed sesquiterpenes, including three dimeric guaianolide sesquiterpenes artemongolides G-I (1-3) and four sesquiterpene lactones artemanomalide D-G (16-19), along with seventeen known compounds isoabsinthin (4), absinthin (5), 11-eptabsinthin (6), 11, 11'-bis-epiabsinthin (7), 10', 11'- epiabsinthin (8), anabsinthin (9), isoanabsinthin (10), absinthin D (11), anabsin (12), caruifolin D (13), gnapholide (14), caruifolin C (15), 1ß(R),10ß(S)-dihydroxy-3-oxo-11ß (S)H-4,11(13)-guaien-6α(S),12-olide (20), 1α,6α,8α-trihydroxy-5α,7ßH-guaia-3,10(14),11(13)-trien-12-oic acid (21), 1α,6α,8α-trihydroxy-5α,7ßH-guaia-3,9,11(13)-trien-12-oic acid (22), argyinolide J (23), artabsinolide A (24) were isolated from the plant Artemisia mongolica. The structures were determined by interpreting NMR, HRESIMS and ECD data. The X-ray crystal structure of 4, 7 and 8 were reported for the first time. In the anti-vitiligo activity test, compounds 2, 7, 12, 23 and 24 demonstrated activity in promoting melanogenesis at a concentration of 50 µM in B16 cells, with 8-methoxypsoralan (8-MOP) as a positive control. Further research on the mechanism revealed that artemongolides H (2) enhance the expression of MITF and TRPs by upregulating p-Akt and p-GSK-3ß, leading to an increase in ß-catenin content in the cell cytoplasm. Subsequently, ß-catenin translocates into the nucleus, resulting in melanogenesis. The results supported the regulation of melanogenesis by artemongolide H (2) through the Akt/GSK3ß/ß-catenin signaling pathway. The anti-inflammatory results demonstrated that compounds 4, 5, 6, 9 and 14 can inhibit the upregulation of IL-6 mRNA and CCL2 mRNA expression. Compound 12 specifically inhibited the upregulation of IL-6 mRNA expression. These compounds exhibited significant anti-inflammatory activities. The activity results revealed that these sesquiterpene compounds have the potential to become lead compounds for the treatment of vitiligo and inflammatory diseases.


Assuntos
Artemisia , Asteraceae , Sesquiterpenos , Artemisia/química , beta Catenina , Glicogênio Sintase Quinase 3 beta , Interleucina-6 , Proteínas Proto-Oncogênicas c-akt , Trientina , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Sesquiterpenos de Guaiano/farmacologia , Sesquiterpenos de Guaiano/química , Anti-Inflamatórios , RNA Mensageiro , Lactonas/farmacologia , Lactonas/química , Asteraceae/química , Estrutura Molecular
12.
J Neurosci ; 44(14)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38395612

RESUMO

ß-Catenin is a bifunctional molecule that is an effector of the wingless-related integration site (Wnt) signaling to control gene expression and contributes to the regulation of cytoskeleton and neurotransmitter vesicle trafficking. In its former role, ß-catenin binds transcription factor 7-like 2 (TCF7L2), which shows strong genetic associations with the pathogenesis of obesity and type-2 diabetes. Here, we sought to determine whether ß-catenin plays a role in the neuroendocrine regulation of body weight and glucose homeostasis. Bilateral injections of adeno-associated virus type-2 (AAV2)-mCherry-Cre were placed into the arcuate nucleus of adult male and female ß-catenin flox mice, to specifically delete ß-catenin expression in the mediobasal hypothalamus (MBH-ß-cat KO). Metabolic parameters were then monitored under conditions of low-fat (LFD) and high-fat diet (HFD). On LFD, MBH-ß-cat KO mice showed minimal metabolic disturbances, but on HFD, despite having only a small difference in weekly caloric intake, the MBH-ß-cat KO mice were significantly heavier than the control mice in both sexes (p < 0.05). This deficit seemed to be due to a failure to show an adaptive increase in energy expenditure seen in controls, which served to offset the increased calories by HFD. Both male and female MBH-ß-cat KO mice were highly glucose intolerant when on HFD and displayed a significant reduction in both leptin and insulin sensitivity compared with controls. This study highlights a critical role for ß-catenin in the hypothalamic circuits regulating body weight and glucose homeostasis and reveals potential mechanisms by which genetic variation in this pathway could impact on development of metabolic disease.


Assuntos
Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Animais , Feminino , Masculino , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Peso Corporal/genética , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Glucose/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo
13.
Phytomedicine ; 126: 155395, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340578

RESUMO

BACKGROUND: The interplay of tumor-associated macrophages (TAMs) and tumor cells plays a key role in the development of hepatocellular carcinoma (HCC) and provides an important target for HCC therapy. The communication between them is still on the investigation. Bufalin, the active component derived from the traditional Chinese medicine (TCM) Chansu, has been evidenced to possess anti-HCC activity by directly suppressing tumor cells, while its immunomodulatory effect on the tumor microenvironment (TME) is unclear. PURPOSE: To explore the mechanism of M2 TAM-governed tumor cell proliferation and the inhibitory effect of bufalin on HCC growth by targeting M2 macrophages. METHODS: Morphology and marker proteins were detected to evaluate macrophage polarization via microscopy and flow cytometry. Cellular proliferation and malignant transformation of HCC cells cultured with macrophage conditioned medium (CM) or bufalin-primed M2-CM, were assessed by cell viability, colony formation and soft agar assays. Regulations of gene transcription and protein expression and release were determined by RT-qPCR, immunoblotting, immunoprecipitation, ELISA and immunofluorescence. Tumorigenicity upon bufalin treatment was verified in orthotopic and diethylnitrosamine-induced HCC mouse model. RESULTS: In this study, we first verified that M2 macrophages secreted Wnt1, which acted as a mediator to trigger ß-catenin activation in HCC cells, leading to cellular proliferation. Bufalin suppressed HCC cell proliferation and malignant transformation by inhibiting Wnt1 release in M2 macrophages, and dose-dependently inhibited HCC progression in mice. Mechanistically, bufalin specially targeted to block Wnt1 transcription, thus inactivating ß-catenin signaling cascade in HCC cells and leading to tumor regression in HCC mouse model. CONCLUSION: These results clearly reveal a novel potential of bufalin to suppress HCC through immunomodulation, and shed light on a new M2 macrophage-based modality of HCC immunotherapy, which additively enhances direct tumor-inhibitory efficacy of bufalin.


Assuntos
Bufanolídeos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , beta Catenina/metabolismo , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Macrófagos/metabolismo , Carcinogênese , Microambiente Tumoral
14.
J Ethnopharmacol ; 328: 117932, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38382652

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Colitis is an important risk factor for the occurrence of colorectal cancer (CRC), and the colonization of Fusobacterium nucleatum (Fn) in the intestines accelerates this transformation process. Banxia Xiexin Decoction (BXD), originating from Shanghanlun, is a classic prescription for treating gastrointestinal diseases. Current researches indicate that BXD can effectively delay the colitis-to-cancer transition, but it is still unclear whether it can inhibit Fn colonization to achieve this delaying effect. AIM OF STUDY: This study explored the effect and mechanism of BXD in inhibiting Fn intestinal colonization to delay colitis-to-cancer transition. MATERIALS AND METHODS: We constructed a mouse model of colitis-to-cancer transition by regularly gavaging Fn combined with azoxymethane (AOM)/dextran sodium sulfate (DSS), and administered BXD by gavage. We monitored the body weight of mice, measured the length and weight of their colons, and calculated the disease activity index (DAI) score. The growth status of colon tumors was observed by hematoxylin and eosin (H&E) staining, and the changes in gut microbiota in each group of mice were detected by 16S rDNA analysis. Immunohistochemistry was used to detect the expression of E-cadherin and ß-catenin in colon tissues, and immunofluorescence was used to observe the infiltration of M2 macrophages in colon tissues. In cell experiments, we established a co-culture model of Fn and colon cancer cells and intervened with BXD-containing serum. Malignant behaviors such as cell proliferation, invasion, and migration were detected, as well as changes in their cell cycle. We examined the protein levels of E-cadherin, ß-catenin, Axin2, and Cyclin D1 in each group were detected by Western blot. We used US1 strain (fadA-) as a control and observed the effects of BXD-containing serum on Fn attachment and invasion of colon cancer cells through attachment and invasion experiments. RESULTS: BXD can inhibit the colitis-to-cancer transition in mice infected with Fn, reduce crypt structure damage, improve gut microbiota dysbiosis, upregulate E-cadherin and decrease ß-catenin expression, and reduce infiltration of M2 macrophages, thus inhibiting the process of colitis-to-cancer transition. Cell experiments revealed that BXD-containing serum can inhibit the proliferation, migration, and invasion of colon cancer cells infected with Fn and regulate their cell cycle. More importantly, we found that BXD-containing serum can inhibit the binding of Fn's FadA adhesin to E-cadherin, reduce Fn's attachment and invasion of colon cancer cells, thereby downregulating the E-cadherin/ß-catenin signaling pathway. CONCLUSIONS: These findings show that BXD can inhibit Fn colonization by interfering with the binding of FadA to E-cadherin, reducing the activation of the E-cadherin/ß-catenin signaling pathway, and ultimately delaying colitis-to-cancer transition.


Assuntos
Colite , Neoplasias do Colo , Medicamentos de Ervas Chinesas , Animais , Camundongos , beta Catenina/metabolismo , Fusobacterium nucleatum/metabolismo , Transdução de Sinais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Caderinas/genética , Caderinas/metabolismo , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo
15.
J Ethnopharmacol ; 325: 117846, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38301982

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Radix Astragali, a versatile traditional Chinese medicinal herb, has a rich history dating back to "Sheng Nong's herbal classic". It has been employed in clinical practice to address various ailments, including depression. One of its primary active components, total flavonoids from Astragalus (TFA), remains unexplored in terms of its potential antidepressant properties. This study delves into the antidepressant effects of TFA using a mouse model subjected to chronic unpredictable mild stress (CUMS). AIMS OF THE STUDY: The study aimed to scrutinize how TFA influenced depressive behaviors, corticosterone and glutamate levels in the hippocampus, as well as myelin-related protein expression in CUMS mice. Additionally, it sought to explore the involvement of the Wnt/ß-catenin/Olig2/Sox10 signaling axis as a potential antidepressant mechanism of TFA. MATERIALS AND METHODS: Male C57BL/6 mice were subjected to CUMS to induce depressive behaviors. TFA were orally administered at two different doses (50 mg/kg and 100 mg/kg). A battery of behavioral tests, biochemical analyses, immunohistochemistry, UPLC-MS/MS, real-time PCR, and Western blotting were employed to evaluate the antidepressant potential of TFA. The role of the Wnt/ß-catenin/Olig2/Sox10 signaling axis in the antidepressant mechanism of TFA was validated through MO3.13 cells. RESULTS: TFA administration significantly alleviated depressive behaviors in CUMS mice, as evidenced by improved sucrose preference, reduced immobility in tail suspension and forced swimming tests, and increased locomotor activity in the open field test. Moreover, TFA effectively reduced hippocampal corticosterone and glutamate levels and promoted myelin formation in the hippocampus of CUMS mice. Then, TFA increased Olig2 and Sox10 expression while inhibiting the Wnt/ß-catenin pathway in the hippocampus of CUMS mice. Finally, we further confirmed the role of TFA in promoting myelin regeneration through the Wnt/ß-catenin/Olig2/Sox10 signaling axis in MO3.13 cells. CONCLUSIONS: TFA exhibited promising antidepressant effects in the CUMS mouse model, facilitated by the restoration of myelin sheaths and regulation of corticosterone, glutamate, Olig2, Sox10, and the Wnt/ß-catenin pathway. This research provides valuable insights into the potential therapeutic application of TFA in treating depression, although further investigations are required to fully elucidate the underlying molecular mechanisms and clinical relevance.


Assuntos
Corticosterona , Depressão , Fator de Transcrição 2 de Oligodendrócitos , Masculino , Animais , Camundongos , Depressão/tratamento farmacológico , Depressão/metabolismo , Flavonoides/farmacologia , Cromatografia Líquida , beta Catenina/metabolismo , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Hipocampo , Glutamatos/metabolismo , Glutamatos/farmacologia , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
16.
Molecules ; 29(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38257211

RESUMO

Suaeda glauca, a halophyte in the Amaranthaceae family, exhibits remarkable resilience to high salt and alkali stresses despite the absence of salt glands or vesicles in its leaves. While there is growing pharmacological interest in S. glauca, research on its secondary metabolites remains limited. In this study, chemical constituents of the aerial parts of S. glauca were identified using 1D- and 2D-NMR experiments, and its biological activity concerning hair loss was newly reported. Eight compounds, including alkaloids (1~3), flavonoids (4~6), and phenolics (7 and 8), were isolated. The compounds, except the flavonoids, were isolated for the first time from S. glauca. In the HPLC chromatogram, quercetin-3-O-ß-d-glucoside, kaempferol-3-O-ß-d-glucoside, and kaempferol were identified as major constituents in the extract of S. glauca. Additionally, the therapeutic potential of the extract of S. glauca and the isolated compounds 1~8 on the expressions of VEGF and IGF-1, as well as the regulation of Wnt/ß-catenin signaling, were evaluated in human follicle dermal papilla cells (HFDPCs) and human umbilical vein endothelial cells (HUVECs). Among the eight compounds, compound 4 was the most potent in terms of increasing the expression of VEGF and IGF-1 and the regulation of Wnt/ß-catenin. These findings suggest that S. glauca extract and its compounds are potential new candidates for preventing or treating hair loss.


Assuntos
Chenopodiaceae , Fator de Crescimento Insulin-Like I , Humanos , Animais , Plantas Tolerantes a Sal , beta Catenina , Fator A de Crescimento do Endotélio Vascular , Alopecia , Flavonoides/farmacologia , Células Endoteliais da Veia Umbilical Humana , Extratos Vegetais/farmacologia
17.
Phytother Res ; 38(3): 1313-1328, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38194947

RESUMO

5-Fluorouracil is a commonly used chemotherapy drug for colorectal cancer. Resistance to 5-Fluorouracil remains a challenge. This research aimed to explore the mechanism of 5-Fluorouracil resistance in colorectal cancer. RT-qPCR and Western blot were used to determine the RNA and protein expression in both cells and exosome. Assays in vitro and in vivo were performed to measure the role of miR-149-5p in colorectal cancer cells. RIP, luciferase activity report, and RNA pulldown assay were applied to detect the association of PTOV1-AS1, SUV39H1, miR-149-5p, and FOXM1. MiR-149-5p was down-expressed in 5-Fluorouracil-resistant cells. MiR-149-5p enhanced the effectiveness of 5-Fluorouracil both in vitro and in vivo. Sensitive colorectal cancer cells released exosomal miR-149-5p to sensitize resistant cells to chemotherapy. Mechanistically, miR-149-5p targeted the FOXM1 to inactivate Wnt/ß-catenin pathway, and PTOV1-AS1 recruited SUV39H1 to suppress miR-149-5p transcription, in turn activating Wnt/ß-catenin pathway, and forming a positive feedback loop with FOXM1. PTOV1-AS1 inhibits miR-149-5p by a positive feedback loop with FOXM1-mediated Wnt/ß-catenin pathway, which provides insights into a potential novel target for enhancing the effectiveness of chemotherapy in colorectal cancer patients.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Retroalimentação , Proliferação de Células , Via de Sinalização Wnt , Fluoruracila , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , Proteínas de Neoplasias/metabolismo , Biomarcadores Tumorais/uso terapêutico
18.
Sci Total Environ ; 918: 170410, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38280596

RESUMO

Heat stress (HS) is a critical challenge in broilers due to the high metabolic rate and lack of sweat glands. Results from this study show that implementing a cyclic chronic HS (34 °C for 7 h/d) to finisher broilers decreased the diversity of cecal microbiota and impaired intestinal barrier, resulting in gut leak and decreased body weight (both P < 0.05). These alterations might be related to inflammatory outbursts and the retarded proliferation of intestinal epithelial cells (IECs) according to the transcriptome analysis. Considering the potential beneficial properties of Lactobacillus on intestinal development and function, the protective effects of Lactobacillus rhamnosus (L. rhamnosus) on the intestine were investigated under HS conditions in this study. Orally supplemented L. rhamnosus improved the composition of cecal microbiota and upregulated the transcription of tight junction proteins in both duodenum and jejunum, with a consequent suppression in intestinal gene expressions of pro-inflammatory cytokines and facilitation in digestive capability. Meanwhile, the jejunal villus height of the birds that received L. rhamnosus was significantly higher compared with those treated with the broth (P < 0.05). The expression abundances of genes related to IECs proliferation and differentiation were increased by L. rhamnosus, along with upregulated mRNA levels of Wnt3a and ß-catenin in jejunum. In addition, L. rhamnosus attenuated enterocyte apoptosis as indicated by decreased caspase-3 and caspase-9 gene expressions. The results indicated that oral administration with L. rhamnosus mitigated HS-induced dysfunction by promoting intestinal development and epithelial maturation in broilers and that the effects of L. rhamnosus might be dependent of Wnt/ß-catenin signaling.


Assuntos
Microbioma Gastrointestinal , Transtornos de Estresse por Calor , Animais , Galinhas , beta Catenina/farmacologia , Lactobacillus , Suplementos Nutricionais/análise , Resposta ao Choque Térmico , Ração Animal/análise
19.
J Tradit Chin Med ; 44(1): 78-87, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38213242

RESUMO

OBJECTIVE: To unmask the underlying mechanisms of Yisui granule (, YSG) for the treatment of Myelodysplastic syndromes (MDS). METHODS: Our study used an SKM-1 mouse xenograft model of MDS to explore the anti-tumor potential of YSG and its safety, assess its effect on overall survival (OS), and evaluate whether its mechanism is associated with the demethylation of the secreted frizzled related protein 5 (sFRP5) gene and suppressing Wnt/ß-catenin pathway. Bisulfite amplicon sequencing was applied to detect the level of methylation of the sFRP5 gene; western blotting, immunofluorescence staining, and real-time Polymerase Chain Reaction were performed to detect DNA methyltransferase 1 (DNMT1), sFRP5, and other Wnt/ß-catenin pathway-related mRNA and protein expression. RESULTS: The results showed that high-dosage YSG exerted an anti-tumor effect similar to that of decitabine, improved OS, and reduced long-term adverse effects in the long term. Mechanically, YSG reduced the expression of DNMT1 methyltransferase, decreased the methylation, and increased the expression of the Wnt/ß-catenin pathway antagonist-sFRP5. Furthermore, components of the Wnt/ß-catenin pathway, including Wnt3a, ß-catenin, c-Myc, and cyclinD1, were down-regulated in response to YSG, suggesting that YSG could treat MDS by demethylating the sFRP5 gene and suppressing the Wnt/ß-catenin pathway. CONCLUSIONS: Our findings demonstrated that YSG could be used alone or in combination with decitabine to improve outcomes in the MDS animal model, providing an alternative solution for treating MDS.


Assuntos
Síndromes Mielodisplásicas , Via de Sinalização Wnt , Humanos , Animais , Camundongos , Metilação de DNA , Decitabina/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Xenoenxertos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Modelos Animais de Doenças , Metiltransferases/genética , Metiltransferases/metabolismo
20.
Adv Sci (Weinh) ; 11(13): e2307850, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240457

RESUMO

Kidney fibrosis is a common fate of chronic kidney diseases (CKDs), eventually leading to renal dysfunction. Yet, no effective treatment for this pathological process has been achieved. During the bioassay-guided chemical investigation of the medicinal plant Wikstroemia chamaedaphne, a daphne diterpenoid, daphnepedunin A (DA), is characterized as a promising anti-renal fibrotic lead. DA shows significant anti-kidney fibrosis effects in cultured renal fibroblasts and unilateral ureteral obstructed mice, being more potent than the clinical trial drug pirfenidone. Leveraging the thermal proteome profiling strategy, cell division cycle 42 (Cdc42) is identified as the direct target of DA. Mechanistically, DA targets to reduce Cdc42 activity and down-regulates its downstream phospho-protein kinase Cζ(p-PKCζ)/phospho-glycogen synthase kinase-3ß (p-GSK-3ß), thereby promoting ß-catenin Ser33/37/Thr41 phosphorylation and ubiquitin-dependent proteolysis to block classical pro-fibrotic ß-catenin signaling. These findings suggest that Cdc42 is a promising therapeutic target for kidney fibrosis, and highlight DA as a potent Cdc42 inhibitor for combating CKDs.


Assuntos
Diterpenos , Nefropatias , Proteína cdc42 de Ligação ao GTP , Animais , Camundongos , beta Catenina/efeitos dos fármacos , beta Catenina/metabolismo , Fibrose/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Rim/metabolismo , Nefropatias/tratamento farmacológico , Wikstroemia/química , Diterpenos/farmacologia , Proteína cdc42 de Ligação ao GTP/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA