Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 640
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8017, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580836

RESUMO

Cyanobacteria produce neurotoxic non-protein amino acids (NPAAs) that accumulate in ecosystems and food webs. American lobsters (Homarus americanus H. Milne-Edwards) are one of the most valuable seafood industries in Canada with exports valued at > $2 billion. Two previous studies have assessed the occurrence of ß-N-methylamino-L-alanine (BMAA) in a small number of lobster tissues but a complete study has not previously been undertaken. We measured NPAAs in eyeballs, brain, legs, claws, tails, and eggs of 4 lobsters per year for the 2021 and 2022 harvests. Our study included 4 male and 4 female lobsters. We detected BMAA and its isomers, N-(2-aminoethyl)glycine (AEG), 2,4-diaminobutyric acid (DAB) and ß-aminomethyl-L-alanine (BAMA) by a fully validated reverse phase chromatography-tandem mass spectrometry method. We quantified BMAA, DAB, AEG and BAMA in all of the lobster tissues. Our quantification data varied by individual lobster, sex and collection year. Significantly more BMAA was quantified in lobsters harvested in 2021 than 2022. Interestingly, more BAMA was quantified in lobsters harvested in 2022 than 2021. Monitoring of lobster harvests for cyanobacterial neurotoxins when harmful algal bloom events occur could mitigate risks to human health.


Assuntos
Diamino Aminoácidos , Decápodes , Síndromes Neurotóxicas , Animais , Masculino , Feminino , Humanos , Nephropidae/metabolismo , Ecossistema , Neurotoxinas/toxicidade , Diamino Aminoácidos/metabolismo , Alimentos Marinhos/análise , Decápodes/metabolismo , beta-Alanina
2.
Breast Cancer Res Treat ; 203(3): 565-574, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37923962

RESUMO

PURPOSE: Most cytotoxic drugs are dosed using body surface area (BSA), yet not all cancer patients receive the full BSA-determined dose. Prior work suggests that breast cancer patients who are obese are more likely to experience dose reduction than normal weight patients. However, the factors driving dose reduction remain unclear. METHODS: In 452 women diagnosed with stage I-IIIA primary breast cancer at Kaiser Permanente Northern California, we evaluated the association between obesity and dose reduction, and further explored other factors in relation to dose reduction, including various sociodemographic characteristics, tumor characteristics, and comorbidities. Study participants were a part of the Pathways Study, diagnosed between 2006 and 2013 and treated with cyclophosphamide + doxorubicin, followed by paclitaxel (ACT). Dose reduction was assessed using first cycle dose proportion (FCDP) and average relative dose intensity (ARDI), a metric of dose intensity over the course of chemotherapy. RESULTS: Overall, 8% of participants received a FCDP < 90% and 21.2% had an ARDI < 90%, with dose reduction increasing with body mass index. In adjusted logistic regression models, obese women had 4.1-fold higher odds of receiving an ARDI < 90% than normal weight women (95% CI: 1.9-8.9; p-trend = 0.0006). Increasing age was positively associated with an ADRI < 90%, as was the presence of comorbidity. Dose reduction was less common in later calendar years. CONCLUSION: Results offer insight on factors associated with chemotherapy dosing for a common breast cancer regimen. Larger studies are required to evaluate relevance to other regimens, and further work will be needed to determine whether dose reductions impact outcomes in obese women.


Assuntos
Neoplasias da Mama , Prestação Integrada de Cuidados de Saúde , Fumaratos , beta-Alanina/análogos & derivados , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/complicações , Redução da Medicação , Estudos Retrospectivos , Ciclofosfamida , Obesidade/complicações , Obesidade/epidemiologia , Obesidade/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
3.
Poult Sci ; 103(2): 103319, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141274

RESUMO

Poultry meat is a highly esteemed product among consumers. However, the emphasis on increasing body weight has led to a rise in the proportion of rapidly shrinking fibers, adversely affecting the quality and shelf life of poultry meat. With a growing awareness of dietetics among consumers, there is an increasing challenge to produce chicken meat that is not only free of antibiotics but also beneficial for dietary and health reasons. Biogenic amines (BA) can serve as indicators of meat freshness and quality. While they play vital roles in the body, excessive consumption of BA can have toxic and carcinogenic effects. The objective of this study was to examine the impact of supplementing feed with garlic extract and ß-alanine (ß-Ala) on the formation of BA and amino acid (AA) levels in the breast and leg muscles of chickens stored under aerobic chilling conditions. The muscles were obtained from chickens fed with garlic extract and ß-Ala in quantities of 0.5 and 2% for each additive, as well as 0.5 and 2% of their combination. Analyses were conducted on d 1, 3, 5, 7, and 10 of storage. ß-Ala supplementation increased the proportion of this AA in breast (P < 0.01) and leg muscles (P < 0.01), along with a rise in the proportion of nonessential AA (NEAA; sum of aspartic, aspartic acid, glutamic, glutamic acid, serine, ß-Ala, and proline) (P < 0.01). The levels of BA changed during storage in breast and leg muscles (P < 0.001). The applied diet significantly influenced the formation of putrescine (P = 0.030), phenylethylamine (P = 0.003), agmatine (P = 0.025), and total BA (P < 0.001) in breast muscles. On the 10 d of storage, the breast muscles exhibited the lowest BA index (BAI) in the group, with a diet supplemented with 0.5% garlic extract and 0.5% ß-Ala (P < 0.05). The leg muscles showed a similar BA trend as the breast muscles. These supplements may be utilized in production to augment the protein content of chicken muscles and potentially decrease the BAI index during meat storage.


Assuntos
Aminoácidos , Alho , Animais , Galinhas/fisiologia , Suplementos Nutricionais/análise , Dieta/veterinária , Antioxidantes , Aminas Biogênicas , beta-Alanina , Carne/análise , Extratos Vegetais , Ração Animal/análise
4.
Poult Sci ; 102(12): 103102, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37783191

RESUMO

Hydrogen sulfide (H2S) is one of the most irritant gases present in rearing stalls that suppress broilers' healthy growth, which is seriously required an effective alleviation method. In this study, Lactobacillus was supplemented to investigate the alleviative effects on broilers reared under consecutive H2S exposure. A total of 180 healthy 1-day-old male AA broilers with similar body weight (40.8 ± 1.0 g) were randomly allotted into the control treatment (CON), the hydrogen sulfide treatment (H2S), and the Lactobacillus supplement under H2S exposure treatment (LAC) for a 42-d-long feeding process. Growth and carcass performances, immunity-related parameters, intestinal development and cecal microbial communities, and blood metabolites were measured. Results showed that Lactobacillus supplement significantly increased the body weight gain (BWG) while reduced the mortality rate, abdominal fat and bursa of fabricius weight during the whole rearing time compared with H2S treatment (P < 0.05). Serum LPS, IL-1ß, IL-2, and IL-6 contents were observed significantly increased after H2S treatment while remarkably decreased after Lactobacillus supplementation(P < 0.05). Intestinal morphology results showed a significant higher in the development of ileum villus height (P < 0.05). Cecal microbiota results showed the bacterial composition was significantly altered after Lactobacillus supplement (P < 0.05). Specifically, Lactobacillus supplement significantly decreased the relative abundance of Faecalibacterium, while significantly proliferated the relative abundance of Lactobacillus, Bifidobacterium, Clostridium, and Campylobacter (P<0.05). Metabolic results indicated that Lactobacillus supplement may alleviate the harmful effects caused by H2S through regulating the pyrimidine metabolism, starch and sucrose metabolism, fructose and mannose degradation, and beta-alanine metabolism. In summary, Lactobacillus supplement effectively increased BWG and decreased mortality rate of broilers under H2S exposure by enhancing the body's immune capacity, proliferating beneficial microbes (e.g., Lactobacillus and Bifidobacterium), and regulating the physiological pyrimidine metabolism, starch and sucrose metabolism, and beta-alanine metabolism.


Assuntos
Dieta , Sulfeto de Hidrogênio , Masculino , Animais , Dieta/veterinária , Sulfeto de Hidrogênio/metabolismo , Galinhas/fisiologia , Lactobacillus/fisiologia , Suplementos Nutricionais , Amido/metabolismo , beta-Alanina/metabolismo , Peso Corporal , Pirimidinas , Sacarose , Ração Animal/análise
5.
Sports Med ; 53(Suppl 1): 25-48, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37878211

RESUMO

This narrative review evaluated the evidence for buffering agents (sodium bicarbonate, sodium citrate and beta-alanine), with specific consideration of three discrete scenarios: female athletes, extreme environments and combined buffering agents. Studies were screened according to exclusion and inclusion criteria and were analysed on three levels: (1) moderating variables (supplement dose and timing, and exercise test duration and intensity), (2) design factors (e.g., use of crossover or matched group study design, familiarisation trials) and (3) athlete-specific factors (recruitment of highly trained participants, buffering capacity and reported performance improvements). Only 19% of the included studies for the three buffering agents reported a performance benefit, and only 10% recruited highly trained athletes. This low transferability of research findings to athletes' real-world practices may be due to factors including the small number of sodium citrate studies in females (n = 2), no studies controlling for the menstrual cycle (MC) or menstrual status using methods described in recently established frameworks, and the limited number of beta-alanine studies using performance tests replicating real-world performance efforts (n = 3). We recommend further research into buffering agents in highly trained female athletes that control or account for the MC, studies that replicate the demands of athletes' heat and altitude camps, and investigations of highly trained athletes' use of combined buffering agents. In a practical context, we recommend developing evidence-based buffering protocols for individual athletes which feature co-supplementation with other evidence-based products, reduce the likelihood of side-effects, and optimise key moderating factors: supplement dose and timing, and exercise duration and intensity.


Assuntos
Atletas , Desempenho Atlético , Humanos , Feminino , Bicarbonato de Sódio , Exercício Físico , Citrato de Sódio , beta-Alanina , Ambientes Extremos
6.
Poult Sci ; 102(12): 103123, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37832192

RESUMO

The slow-growing Korat chicken (KR) has been developed to provide an alternative breed for smallholder farmers in Thailand. Carnosine enrichment in the meat can distinguish KR from other chicken breeds. Therefore, our aim was to investigate the effect of enriched carnosine synthesis, obtained by the ß-alanine and L-histidine precursor supplementation in the diet, on changes to metabolomic profiles and biochemical compounds in slow-growing KR jejunum tissue. Four hundred 21-day-old female KR chickens were divided into 4 experimental groups: a group with a basal diet, a group with a basal diet supplemented with 1.0% ß-alanine, 0.5% L-histidine, and a mix of 1.0% ß-alanine and 0.5% L-histidine. The feeding trial lasted 70 d. Ten randomly selected chickens from each group were slaughtered. Metabolic profiles were analyzed using proton nuclear magnetic resonance spectroscopy. In total, 28 metabolites were identified. Significant changes in the concentrations of these metabolites were detected between the groups. Partial least squares discriminant analysis was used to distinguish the metabolites between the experimental groups. Based on the discovered metabolites, 34 potential metabolic pathways showed differentiation between groups, and 8 pathways (with impact values higher than 0.05, P < 0.05, and FDR < 0.05) were affected by metabolite content. In addition, biochemical changes were monitored using synchrotron radiation-based Fourier transform infrared microspectroscopy. Supplementation of ß-alanine alone in the diet increased the ß-sheets and decreased the α-helix content in the amide I region, and supplementation of L-histidine alone in the diet also increased the ß-sheets. Furthermore, the relationship between metabolite contents and biochemical compounds were confirmed using principal component analysis (PCA). Results from the PCA indicated that ß-alanine and L-histidine precursor group was highly positively correlated with amide I, amide II, creatine, tyrosine, valine, isoleucine, and aspartate. These findings can help to understand the relationships and patterns between the spectral and metabolic processes related to carnosine synthesis.


Assuntos
Carnosina , Animais , Feminino , Carnosina/análise , Galinhas/metabolismo , Histidina/metabolismo , Jejuno/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , beta-Alanina/metabolismo , Amidas/análise , Amidas/metabolismo , Amidas/farmacologia , Músculo Esquelético/química
7.
Biochemistry (Mosc) ; 88(8): 1181-1190, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37758316

RESUMO

Using nutritional interventions to cure and manage psychiatric disorders is a promising tool. In this regard, accumulating documents support strong relationships between the diet and brain health throughout the lifespan. Evidence from animal and human studies demonstrated that ß-alanine (Beta-alanine; BA), a natural amino acid, provides several benefits in fight against cognitive decline promoting mental health. This review summarizes and reports state-of-the-art evidence on how BA affects cognitive health and argues existence of potential unrevealed biochemical mechanisms and signaling cascades. There is a growing body of evidence showing that BA supplement has a significant role in mental health mediating increase of the cell carnosine and brain-derived neurotrophic factor (BDNF) content. BDNF is one of the most studied neurotrophins in the mammalian brain, which activates several downstream functional cascades via the tropomyosin-related kinase receptor type B (TrkB). Activation of TrkB induces diverse processes, such as programmed cell death and neuronal viability, dendritic branching growth, dendritic spine formation and stabilization, synaptic development, cognitive-related processes, and synaptic plasticity. Carnosine exerts its main effect via its antioxidant properties. This critical antioxidant also scavenges hypochlorous acid (HOCl), another toxic species produced in mammalian cells. Carnosine regulates transcription of hundreds of genes related to antioxidant mechanisms by increasing expression of the nuclear erythroid 2-related factor 2 (Nrf2) and translocating Nrf2 to the nucleus. Another major protective effect of carnosine on the central nervous system (CNS) is related to its anti-glycating, anti-aggregate activities, anti-inflammatory, metal ion chelator activity, and regulation of pro-inflammatory cytokine secretion. These effects could be associated with the carnosine ability to form complexes with metal ions, particularly with zinc (Zn2+). Thus, it seems that BA via BDNF and carnosine mechanisms may improve brain health and cognitive function over the entire human lifespan.


Assuntos
Carnosina , Animais , Humanos , Carnosina/farmacologia , Carnosina/metabolismo , Antioxidantes , Fator Neurotrófico Derivado do Encéfalo/genética , Fator 2 Relacionado a NF-E2 , Cognição , beta-Alanina , Mamíferos/metabolismo
8.
High Alt Med Biol ; 24(4): 302-311, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37643283

RESUMO

Rathor, Richa, Sukanya Srivastava, and Geetha Suryakumar. A comparative biochemical study between L-carnosine and ß-alanine in amelioration of hypobaric hypoxia-induced skeletal muscle protein loss. High Alt Med Biol. 24:302-311, 2023. Background: Carnosine (CAR; ß-alanyl-L-histidine), a biologically active dipeptide is known for its unique pH-buffering capacity, metal chelating activity, and antioxidant and antiglycation property. ß-Alanine (ALA) is a nonessential amino acid and used to enhance performance and cognitive functions. Hypobaric hypoxia (HH)-induced muscle protein loss is regulated by multifaceted signaling pathways. The present study investigated the beneficial effects of CAR and ALA against HH-associated muscle loss. Methodology: Simulated HH exposure was performed in an animal decompression chamber. Gastric oral administration of CAR (50 mg·kg-1) and ALA (450 mg·kg-1) were given daily for 3 days and at the end of the treatment, hindlimb skeletal muscle tissue was excised for western blot and biochemical assays. Results: Cosupplementation of CAR and ALA alone was able to ameliorate the hypoxia-induced inflammation, oxidative stress (FOXO), ER stress (GRP-78), and atrophic signaling (MuRF-1) in the skeletal muscles. Creatinine phospho kinase activity and apoptosis were also decreased in CAR- and ALA-supplemented rats. However, CAR showed enhanced protection in HH-induced muscle loss as CAR supplementation was able to enhance protein concentration, body weight, and decreased the protein oxidation and ALA administration was not able to restore the same. Conclusions: Hence, the present comprehensive study supports the fact that CAR (50 mg·kg-1) is more beneficial as compared with ALA (450 mg·kg-1) in ameliorating the hypoxia-induced skeletal muscle loss.


Assuntos
Carnosina , Ratos , Animais , Carnosina/farmacologia , Carnosina/metabolismo , Músculo Esquelético/metabolismo , Suplementos Nutricionais , Proteínas Musculares/metabolismo , beta-Alanina/farmacologia , beta-Alanina/metabolismo , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo
9.
J Biol Chem ; 299(8): 104919, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315792

RESUMO

Coenzymes are important for all classes of enzymatic reactions and essential for cellular metabolism. Most coenzymes are synthesized from dedicated precursors, also referred to as vitamins, which prototrophic bacteria can either produce themselves from simpler substrates or take up from the environment. The extent to which prototrophs use supplied vitamins and whether externally available vitamins affect the size of intracellular coenzyme pools and control endogenous vitamin synthesis is currently largely unknown. Here, we studied coenzyme pool sizes and vitamin incorporation into coenzymes during growth on different carbon sources and vitamin supplementation regimes using metabolomics approaches. We found that the model bacterium Escherichia coli incorporated pyridoxal, niacin, and pantothenate into pyridoxal 5'-phosphate, NAD, and coenzyme A (CoA), respectively. In contrast, riboflavin was not taken up and was produced exclusively endogenously. Coenzyme pools were mostly homeostatic and not affected by externally supplied precursors. Remarkably, we found that pantothenate is not incorporated into CoA as such but is first degraded to pantoate and ß-alanine and then rebuilt. This pattern was conserved in various bacterial isolates, suggesting a preference for ß-alanine over pantothenate utilization in CoA synthesis. Finally, we found that the endogenous synthesis of coenzyme precursors remains active when vitamins are supplied, which is consistent with described expression data of genes for enzymes involved in coenzyme biosynthesis under these conditions. Continued production of endogenous coenzymes may ensure rapid synthesis of the mature coenzyme under changing environmental conditions, protect against coenzyme limitation, and explain vitamin availability in naturally oligotrophic environments.


Assuntos
Coenzimas , Escherichia coli , beta-Alanina , beta-Alanina/metabolismo , Coenzima A/biossíntese , Coenzimas/biossíntese , Piridoxal , Fosfato de Piridoxal/metabolismo , Vitaminas/metabolismo , Escherichia coli/metabolismo , NAD/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo
10.
Nutrients ; 15(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37049610

RESUMO

The dipeptide carnosine is a physiologically important molecule in the human body, commonly found in skeletal muscle and brain tissue. Beta-alanine is a limiting precursor of carnosine and is among the most used sports supplements for improving athletic performance. However, carnosine, its metabolite N-acetylcarnosine, and the synthetic derivative zinc-L-carnosine have recently been gaining popularity as supplements in human medicine. These molecules have a wide range of effects-principally with anti-inflammatory, antioxidant, antiglycation, anticarbonylation, calcium-regulatory, immunomodulatory and chelating properties. This review discusses results from recent studies focusing on the impact of this supplementation in several areas of human medicine. We queried PubMed, Web of Science, the National Library of Medicine and the Cochrane Library, employing a search strategy using database-specific keywords. Evidence showed that the supplementation had a beneficial impact in the prevention of sarcopenia, the preservation of cognitive abilities and the improvement of neurodegenerative disorders. Furthermore, the improvement of diabetes mellitus parameters and symptoms of oral mucositis was seen, as well as the regression of esophagitis and taste disorders after chemotherapy, the protection of the gastrointestinal mucosa and the support of Helicobacter pylori eradication treatment. However, in the areas of senile cataracts, cardiovascular disease, schizophrenia and autistic disorders, the results are inconclusive.


Assuntos
Carnosina , Humanos , Carnosina/uso terapêutico , Antioxidantes/metabolismo , Suplementos Nutricionais , Dipeptídeos/metabolismo , Músculo Esquelético/metabolismo , beta-Alanina/farmacologia , beta-Alanina/metabolismo
11.
Nutr Hosp ; 40(5): 1047-1055, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37073742

RESUMO

Introduction: Background: the use of beta-alanine (BA) to increase physical performance in the heavy-intensity domain zone (HIDZ) is widely documented. However, the effect of this amino acid on the post-exertion rating of perceived exertion (RPE), heart rate (HR), and blood lactate (BL) is still uncertain. Objectives: a) to determine the effect of acute BA supplementation on post-exertion RPE, HR, and BL in middle-distance athletes; and b) to determine the effect of acute BA supplementation on physical performance on the 6-minute race test (6-MRT). Material and methods: the study included 12 male middle-distance athletes. The de-sign was quasi-experimental, intrasubject, double-blind & crossover. It had two treat-ments (low-dose BA [30 mg·kg-1] and high-dose BA [45 mg·kg-1]) and a placebo, 72 hours apart. The effect of BA was evaluated at the end of the 6-MRT and post-exertion. The variables were RPE, HR and BL, and 6-MRT (m) distance. The statistical analysis included a repeated-measures ANOVA (p < 0.05). Results: the analysis evidenced no significant differences at the end of 6-MRT for all variables (p ˃ 0.05). However, both doses of BA generated a lower post-exertion RPE. The high dose of BA caused significant increases in post-exertion BL (p ˂ 0.05). Conclusion: acute supplementation with BA generated a lower post-exertion RPE. This decrease in RPE and the post-exertion BL increase could be related to an increase in physical performance in HIDZ.


Introducción: Introducción: el uso de beta-alanina (BA) para aumentar el rendimiento físico en zo-nas con dominio de alta intensidad (HIDZ) está ampliamente documentado. Sin em-bargo, el efecto de este aminoácido sobre el índice de esfuerzo percibido (RPE), la frecuencia cardíaca (HR) y el lactato sanguíneo (BL) aún es incierto. Objetivos: a) determinar el efecto de la suplementación aguda de BA sobre el RPE, la HR y el BL posesfuerzo; y b) además del rendimiento en la prueba de carrera de 6 mi-nutos (6-MRT), en atletas de media distancia. Material y métodos: el estudio incluyó a 12 atletas masculinos de media distancia. El diseño fue cuasiexperimental, intrasujeto, doble ciego y cruzado. Incluyó dos trata-mientos (BA en dosis baja [30 mg·kg-1] y BA en dosis alta [45 mg·kg-1]) y placebo, con 72 horas de diferencia. El efecto de BA se evaluó al final de los 6-MRT y posesfuerzo. Las variables fueron RPE, HR y BL, y distancia en 6-MRT (m). El análisis estadístico in-cluyó un ANOVA de medidas repetidas (p < 0,05). Resultados: el análisis no evidenció diferencias significativas al final de los 6-MRT pa-ra todas las variables (p ˃ 0,05). Sin embargo, ambas dosis de BA generaron un menor RPE posesfuerzo. La dosis alta de BA generó incrementos significativos en el BL poses-fuerzo (p ˂ 0,05). Conclusión: la suplementación aguda con BA generó un menor RPE posesfuerzo. Esta disminución del RPE y el aumento en el BL posesfuerzo podrían estar relacionados con un aumento del rendimiento físico en HIDZ.


Assuntos
Ácido Láctico , Esforço Físico , Humanos , Masculino , Esforço Físico/fisiologia , Frequência Cardíaca/fisiologia , beta-Alanina/farmacologia , Desempenho Físico Funcional , Suplementos Nutricionais
12.
Int J Sport Nutr Exerc Metab ; 33(3): 133-140, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36963409

RESUMO

ß-Alanine (BA) is one of the most widely used sport supplements, due to its capacity to improve high-intensity exercise performance by increasing muscle carnosine (MCarn) content, and consequently, the buffering capacity of the muscle. BA is also available in a variety of animal foods, but little is currently known about the influence of dietary BA intake on MCarn. The aim of the current study was to compile a detailed summary of available data on the BA content of commonly consumed foods, and to explore whether associations could be detected between self-reported dietary BA intake and skeletal MCarn in a group of 60 healthy, active, omnivorous men and women. Dietary BA intake was assessed via 3-day food records, and MCarn content assessed by high-performance liquid chromatography. A series of univariate and multivariate linear regression models were used to explore associations between estimated dietary BA and MCarn. No evidence of associations between dietary BA intake and MCarn were identified, with effect sizes close to zero calculated from models accounting for key demographic variables (f2 ≤ 0.02 for all analyses). These findings suggest that capacity to increase MCarn via dietary strategies may be limited, and that supplementation may be required to induce increases of the magnitude required to improve performance.


Assuntos
Carnosina , Animais , Feminino , Dieta , Suplementos Nutricionais , Músculo Esquelético , beta-Alanina
13.
Nutrients ; 15(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36839281

RESUMO

This study investigated 10 weeks of ß-alanine (BA) supplementation on changes in cognitive function, mood, and physical performance in 100 older adults (70.6 ± 8.7 y). Participants were randomized into a BA (2.4 g·d-1) or placebo (PL) group. Testing occurred prior to supplementation (PRE), at the midpoint (MID), and at week-10 (POST). Participants completed cognitive function assessments, including the Montreal cognitive assessment (MOCA) and the Stroop pattern recognition test, at each testing session. Behavioral questionnaires [i.e., the profile of mood states, geriatric depression scale (GDS), and geriatric anxiety scale (GAS)] and physical function assessments (grip strength and timed sit-to-stand) were also conducted. No difference between groups was noted in MoCA scores (p = 0.19). However, when examining participants whose MOCA scores at PRE were at or below normal (i.e., ≤26), participants in BA experienced significant improvements in MOCA scores at MID (13.6%, p = 0.009) and POST (11.8%, p = 0.016), compared to PL. No differences were noted in mood scores, GAS, or any of the physical performance measures. A significant decrease was observed in the GDS for participants consuming BA but not in PL. Results suggested that BA supplementation can improve cognitive function in older adults whose cognitive function at baseline was at or below normal and possibly reduce depression scores.


Assuntos
Cognição , Suplementos Nutricionais , Humanos , Idoso , Afeto , Força da Mão , beta-Alanina , Método Duplo-Cego
14.
Nutrients ; 15(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36839397

RESUMO

ß-alanine is a nonessential amino acid that combines with the amino acid histidine to form the intracellular dipeptide carnosine, an important intracellular buffer. Evidence has been well established on the ability of ß-alanine supplementation to enhance anaerobic skeletal muscle performance. As a result, ß-alanine has become one of the more popular supplements used by competitive athletes. These same benefits have also been reported in soldiers. Evidence accumulated over the last few years has suggested that ß-alanine can result in carnosine elevations in the brain, which appears to have broadened the potential effects that ß-alanine supplementation may have on soldier performance and health. Evidence suggests that ß-alanine supplementation can increase resilience to post-traumatic stress disorder, mild traumatic brain injury and heat stress. The evidence regarding cognitive function is inconclusive but may be more of a function of the stressor that is applied during the assessment period. The potential benefits of ß-alanine supplementation on soldier resiliency are interesting but require additional research using a human model. The purpose of this review is to provide an overview of the physiological role of ß-alanine and why this nutrient may enhance soldier performance.


Assuntos
Carnosina , Militares , Humanos , Carnosina/farmacologia , Exercício Físico/fisiologia , Suplementos Nutricionais , beta-Alanina/farmacologia , Cognição , Músculo Esquelético/metabolismo
15.
Poult Sci ; 102(1): 102323, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36436366

RESUMO

The effect of compound probiotics on the caecum of broilers under heat stress was assessed in this study. A total of 400 twenty-eight-day-old AA male broilers were randomly divided into 4 treatment groups, where each group had 5 replicates of 20 broilers. The 4 treatment groups were a heat stress control group (broilers receiving a normal diet) and groups HP I, HP II, and HP Ⅲ, consisting of broilers receiving 1, 5, and 10 g of compound probiotics added to each kilogram of feed, respectively. Compound probiotics (L. casei, L. acidophilus, and B. lactis at a ratio of 1:1:2) were used to formulate a compound probiotic powder, with 1 × 1010 CFU/g of effective viable bacteria. Heat stress treatment was performed at 32 ± 1°C from 9:00 to 17:00 every day from 28 d to 42 d. In d 28 to 42, compared with the HC group, the ADG of broilers in the HP II and III groups was significantly increased (P < 0.05); the ADFI difference between groups was not significant (P > 0.05); the FCR of HP II and III broilers was significantly decreased (P < 0.05); and the FCR of the HP I group increased, but the difference was not significant (P > 0.05). Transcriptome results demonstrate that 665 differential genes were screened (DEGs; upregulated: 366, downregulated: 299). The DEGs were enriched in the B cell receptor signaling pathway, the intestinal immune network for IgA synthesis, the Fc epsilon RI signaling pathway, and other signaling pathways, according to KEGG enrichment analysis. Metabolome analysis identified 92 differential metabolites (DAMs; upregulated: 48, downregulated: 44). KEGG enrichment analysis indicated significant enrichment of Pantothenate and CoA biosynthesis and beta-Alanine metabolism. The combined transcriptome and metabolome analysis revealed that the DAMs and DEGs were mostly involved in beta-alanine metabolism, arginine biosynthesis, amino sugar and nucleotide sugar, and alanine, aspartate, and glutamate metabolism. The results of this study suggest that the addition of compound probiotics has a positive effect on intestinal metabolites, improving the growth performance and contributing to the overall health of broilers under heat stress.


Assuntos
Dieta , Probióticos , Masculino , Animais , Dieta/veterinária , Galinhas , Transcriptoma , Probióticos/farmacologia , Probióticos/metabolismo , Ceco/microbiologia , Resposta ao Choque Térmico , Metaboloma , beta-Alanina/metabolismo , Ração Animal/análise , Suplementos Nutricionais
16.
J Anim Physiol Anim Nutr (Berl) ; 107(3): 878-886, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36575591

RESUMO

ß-alanine has been demonstrated to improve carcass traits and meat quality of animals. However, no research has been found on the effects of dietary ß-alanine in the meat quality control of finishing pigs, which are among the research focus. Therefore, this study aimed to evaluate the effects of dietary ß-alanine supplementation on growth performance, meat quality, carnosine content, amino acid composition and muscular antioxidant capacity of Chinese indigenous Ningxiang pigs. The treatments contained a basal diet (control, CON) and a basal diet supplemented with 600 mg/kg ß-alanine. Each treatment group consisted of five pens, with five pigs per pen. Results showed that compared with CON, supplemental ß-alanine did not affect the final body weight, average daily gain, average daily feed intake and the feed-to-gain ratio of pigs. Dietary ß-alanine supplementation tended to increase the pH45 min (p = 0.071) while decreasing the shear force (p = 0.085) and the drip loss (p = 0.091). Moreover, it improved (p < 0.05) the activities of glutathione peroxidase and catalase and lessened (p < 0.05) malondialdehyde concentration. Added ß-alanine in diets of finishing pigs could enhance the concentrations of arginine, alanine, and glutamate (p < 0.05) in the longissimus dorsi muscle and tended to raise the levels of cysteine, glycine and anserine (p = 0.060, p = 0.098 and p = 0.091 respectively). Taken together, our results showed that dietary ß-alanine supplementation contributed to the improvement of the carcass traits, meat quality and anserine content, the amelioration of muscle antioxidant capacity and the regulation of amino acid composition in Chinese indigenous Ningxiang pigs.


Assuntos
Antioxidantes , Carnosina , Suínos , Animais , Antioxidantes/metabolismo , Aminoácidos/metabolismo , Carnosina/metabolismo , Carnosina/farmacologia , Anserina/metabolismo , Anserina/farmacologia , Suplementos Nutricionais , Dieta/veterinária , Carne/análise , beta-Alanina/farmacologia , beta-Alanina/metabolismo , Ração Animal/análise , Composição Corporal
17.
Crit Rev Food Sci Nutr ; 63(21): 5080-5093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34882489

RESUMO

Muscle acidification is one of the main factors causing fatigue during exercise, thus compromising performance. The sport supplements beta alanine (ß-A) and sodium bicarbonate (SB) are thought to enhance the effects of the body's buffer systems by reducing H+ concentrations. The aim of this systematic review was to analyze the effects of ß-A and SB co-supplementation on the organism's buffering capacity and sport performance. The databases PubMed, Web of Science, Medline, CINAHL and SPORTDiscus were searched until November 2021 following PRISMA guidelines. Randomized controlled trials, at least single-blind, performed in athletes of any age were considered. Nine studies including a total of 221 athletes were identified for review. Athletes were supplemented with ß-A and SB while they performed exercise tests to assess physical performance and buffer capacity. Five of the nine studies indicated there was some additional improvement in buffering capacity and performance with co-supplementation, while one study concluded that the effect was comparable to the added effects of the individual supplements. According to the results of the studies reviewed, we would recommend ß-A and SB co-supplementation during high intensity exercises lasting between 30 s and 10 min.


Assuntos
Exercício Físico , Bicarbonato de Sódio , Humanos , Bicarbonato de Sódio/farmacologia , Método Simples-Cego , Exercício Físico/fisiologia , Suplementos Nutricionais , beta-Alanina/farmacologia
18.
J Am Nutr Assoc ; 42(2): 187-194, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35512767

RESUMO

To determine the acute effect of low and high-dose BA trials on maximal aerobic speed (MAS) in endurance athletes. We hypothesized that high doses of BA have a greater effect than low doses, both compared to baseline.Twelve male endurance athletes volunteered for the study (age = 21.8 ± 2.37 years, weight = 69.8 ± 4.36 kg, height = 174 ± 5.45 cm, maximal oxygen uptake = 59.6 ± 3.77 mLO2·kg-1·min-1). The experimental design applied was randomized cross-over, double-blind. Treatment included three 6-minute run tests (6-MRT), the first as a baseline, then randomized 6-MRT with low (30 mg·kg-1) and high (45 mg·kg-1) dose BA trials. The 6-MRTs were separated by 72 hours. The main variable of the study was the distance (m) performed in the 6-MRT. Differences between tests were established through ANOVA and Tukey's multiple comparison tests (p < 0.05).The analysis showed significant differences between baseline and both doses (p < 0.001). No significant differences were observed between low and high-dose BA trials (p > 0.05).Both 30 and 45 mg·kg-1 of BA increased physical performance at maximal aerobic speed in endurance athletes. The acute intake formats described in the present investigation may be helpful for endurance athletes training and competing in aerobic-anaerobic transition zones.


Assuntos
Atletas , Resistência Física , Humanos , Masculino , Adulto Jovem , Anaerobiose , beta-Alanina , Suplementos Nutricionais , Método Duplo-Cego
19.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430408

RESUMO

The B12-producing strains Pseudomonas nitroreducens DSM 1650 and Pseudomonas sp. CCUG 2519 (both formerly Pseudomonas denitrificans), with the most distributed pathway among bacteria for exogenous choline/betaine utilization, are promising recombinant hosts for the endogenous production of B12 precursor betaine by direct methylation of bioavailable glycine or non-proteinogenic ß-alanine. Two plasmid-based de novo betaine pathways, distinguished by their enzymes, have provided an expression of the genes encoding for N-methyltransferases of the halotolerant cyanobacterium Aphanothece halophytica or plant Limonium latifolium to synthesize the internal glycine betaine or ß-alanine betaine, respectively. These betaines equally allowed the recombinant pseudomonads to grow effectively and to synthesize a high level of cobalamin, as well as to increase their protective properties against abiotic stresses to a degree comparable with the supplementation of an exogenous betaine. Both de novo betaine pathways significantly enforced the protection of bacterial cells against lowering temperature to 15 °C and increasing salinity to 400 mM of NaCl. However, the expression of the single plant-derived gene for the ß-alanine-specific N-methyltransferase additionally increased the effectiveness of exogenous glycine betaine almost twofold on cobalamin biosynthesis, probably due to the Pseudomonas' ability to use two independent pathways, their own choline/betaine pathway and the plant ß-alanine betaine biosynthetic pathway.


Assuntos
Betaína , Colina , Betaína/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Estresse Fisiológico/genética , Metiltransferases/metabolismo , beta-Alanina , Vitamina B 12
20.
J Nutr Sci Vitaminol (Tokyo) ; 68(Supplement): S31-S33, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36437009

RESUMO

Amino acids are compounds that contain an amino group (-NH2) and a carboxyl group (-COOH) and are components of proteins and materials for various bioactive molecules. The skeletal muscle, which is the largest organ in the human body, representing ~40% of the total body weight, plays important roles in exercise, energy expenditure, and glucose/amino acid usage-processes that are modulated by various amino acids and their metabolites. In this review, we address the metabolism and function of amino acids, especially non-proteinogenic amino acids, in the skeletal muscle. Leucine, a BCAA, and its metabolite, ß-hydroxy-ß-methylbutyrate (HMB), both activate mammalian target of rapamycin complex 1 (mTORC1) and increase protein synthesis, but the mechanisms of activation appear to be different. The metabolite of valine (another BCAA), ß-aminoisobutyric acid (BAIBA), is increased by exercise, is secreted by the skeletal muscle, and acts on other tissues, such as white adipose tissue, to increase energy expenditure. In addition, several amino acid-related molecules reportedly activate skeletal muscle function. Oral 5-aminolevulinic acid (ALA) supplementation can protect against mild hyperglycemia and help prevent type 2 diabetes. ß-alanine levels are decreased in the skeletal muscles of aged mice. ß-alanine supplementation increased the physical performance and improved the executive function induced by endurance exercise in middle-aged individuals. Further studies focusing on the effects of amino acids and their metabolites on skeletal muscle function will provide data essential for the production of food supplements for older adults, athletes, and individuals with metabolic diseases.


Assuntos
Aminoácidos , Diabetes Mellitus Tipo 2 , Pessoa de Meia-Idade , Humanos , Animais , Camundongos , Idoso , Músculo Esquelético , beta-Alanina/farmacologia , Leucina/farmacologia , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA