Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 464
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; : e0050023, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37314343

RESUMO

With limited and often toxic treatment options, carbapenem-resistant Gram-negative infections are associated with significant mortality. Cefepime-zidebactam is a promising antibiotic option undergoing a phase 3 trial that has activity against diverse antibiotic-resistant mechanisms in Gram-negative pathogens due to its ß-lactam enhancer mechanism, mediating multiple PBP binding. We report a case of disseminated infection caused by a New Delhi metallo-ß-lactamase-producing, extensively drug-resistant Pseudomonas aeruginosa isolate in a patient with acute T-cell leukemia, successfully managed with cefepime-zidebactam as a salvage therapy.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Infecções por Pseudomonas , Adulto , Humanos , Pseudomonas aeruginosa/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Terapia de Salvação , Cefalosporinas/uso terapêutico , Antibacterianos/uso terapêutico , beta-Lactamases/genética , beta-Lactamases/metabolismo , Compostos Azabicíclicos/uso terapêutico , Testes de Sensibilidade Microbiana
2.
J Biomol Struct Dyn ; 41(20): 10326-10346, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510677

RESUMO

ß-lactam resistance in bacteria is primarily mediated through the production of ß-lactamases. Among the several strategies explored to mitigate the issue of ß-lactam resistance, the use of plant secondary metabolites in combination with existing ß-lactams seem promising. The present study aims to identify possible ß-lactam potentiating plant secondary metabolites following in vitro and in silico approaches. Among 180 extracts from selected 30 medicinal plants, acetone extract of Ficus religiosa (FRAE) bark recorded the least IC50 value of 3.9 mg/ml. Under in vitro conditions, FRAE potentiated the activity of ampicillin, which was evidenced by the significant reduction in IC50 values of ampicillin against multidrug resistant bacteria. Metabolic profiling following HR-LCMS analysis revealed the presence of diverse metabolites viz. flavonoids, alkaloids, terpenoids, etc. in FRAE. Further, ensemble docking of the FRAE metabolites against four Class A ß-lactamase (SHV1, TEM1, KPC2 and CTX-M-27) showed quercetin, taxifolin, myricetin, luteolin, and miquelianin as potential inhibitors with the least average binding energy. In molecular dynamic simulation studies, myricetin formed the most stable complex with SHV1 and KPC-2 while miquelianin with TEM1 and CTX-M-27. Further, all five metabolites interacted with amino acid residue Glu166 in Ω loop of ß-lactamase, interfering with the deacylation step, thereby disrupting the enzyme activity. The pharmacokinetics and ADMET profile indicate their drug-likeness and non-toxic nature, making them ideal ß-lactam potentiators. This study highlights the ability of metabolites present in FRAE to act as ß-lactamase inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
beta-Lactamases , beta-Lactamas , beta-Lactamas/química , beta-Lactamas/metabolismo , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , Ampicilina
3.
Int J Antimicrob Agents ; 61(1): 106702, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36476965

RESUMO

BACKGROUND: Optimal treatment of carbapenemase-producing Enterobacterales (CPE) bone infections is poorly defined. This study evaluated the efficacy of the novel beta-lactam-beta-lactamase inhibitor-ceftazidime-avibactam (CAZ-AVI)-with different antibiotic combinations in an experimental model of CPE osteomyelitis. METHODS: KPC-99YC is a clinical strain of Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae with intermediate susceptibility to meropenem (MIC 4 mg/L), gentamicin (MIC 0.25 mg/L), colistin (MIC 0.25 mg/L), fosfomycin (MIC 4 mg/L) and ceftazidime-avibactam (MIC 1 mg/L). Time-kill curves were performed at 4x MIC. Osteomyelitis was induced in rabbits by tibial injection of 2×108 CFU of KPC-99YC. Six groups started treatment 14 days later for 7 days: control, colistin, CAZ-AVI, CAZ-AVI plus gentamicin, CAZ-AVI plus colistin and CAZ-AVI plus fosfomycin. Antibiotic dosages were selected to simulate plasma concentrations obtained in humans. Treatment was evaluated according to bone cultures quantified in log10 CFU. RESULTS: In vitro, CAZ-AVI plus colistin or gentamicin were rapidly bactericidal in contrast with CAZ-AVI plus fosfomycin. In vivo, compared with controls, colistin alone (P = 0.045) and CAZ-AVI alone or in combination significantly lowered bone bacterial counts (P < 0.001). Bone sterilisation was achieved in 67% and 100% of animals with combinations of CAZ-AVI plus colistin or gentamicin (P = 0.001 and P < 0.001, respectively) whereas other treatments were no different from controls. CAZ-AVI plus gentamicin provided greater bone bacterial reduction than CAZ-AVI plus colistin (P = 0.033). No CAZ-AVI-resistant strains emerged in treated rabbits, regardless of combination. CONCLUSIONS: CAZ-AVI plus gentamicin was the best effective combination therapy. Combinations with CAZ-AVI appear to be a promising treatment of KPC-producing Klebsiella pneumoniae osteomyelitis.


Assuntos
Combinação de Medicamentos , Fosfomicina , Infecções por Klebsiella , Klebsiella pneumoniae , Osteomielite , Inibidores de beta-Lactamases , Animais , Humanos , Coelhos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , beta-Lactamases/metabolismo , Ceftazidima/uso terapêutico , Ceftazidima/farmacologia , Colistina/uso terapêutico , Colistina/farmacologia , Fosfomicina/uso terapêutico , Fosfomicina/farmacologia , Gentamicinas/uso terapêutico , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Testes de Sensibilidade Microbiana , Osteomielite/tratamento farmacológico , Osteomielite/microbiologia
4.
Food Funct ; 13(19): 9761-9771, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36124641

RESUMO

The antimicrobial actions of natural compounds derived from medicinal plants have been well documented. However, their detailed mechanisms underlying the action against microorganisms remain largely unexplored. Salmonella enterica is a common pathogen causing both gastrointestinal and systemic diseases. In Salmonella enterica, the type III secretion system (T3SS) is employed to export secreted effectors directly to the cytoplasm of host cells. Using a SipA-ß-lactamase reporter, we found that hyperoside (HYP) inhibited the activity of Salmonella T3SS needle protein InvG, prevented damage to host cells and protected mice against Salmonella enterica serovar Typhimurium. It was also observed that HYP binds to InvG directly through hydrogen-bridged cations and hydrophobic interactions. The unique mechanism of antibacterial action of HYP suggested that it could be used as a potentially effective candidate for future antimicrobial regimens.


Assuntos
Salmonella enterica , Salmonella typhimurium , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cátions , Hidrogênio/farmacologia , Camundongos , Quercetina/análogos & derivados , Sistemas de Secreção Tipo III/metabolismo , beta-Lactamases/metabolismo , beta-Lactamases/farmacologia
5.
Front Cell Infect Microbiol ; 12: 981792, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118031

RESUMO

Ceftazidime/Avibactam (CAZ/AVI) is frequently used to treat KPC-producing Pseudomonas aeruginosa (KPC-PA) and Enterobacterales. CAZ/AVI resistance is driven by several mechanisms. In P. aeruginosa this mainly occurs through alteration of AmpC, porins, and/or efflux pump overexpression, whereas in Enterobacterales it frequently occurs through D179Y substitution in the active site of KPC enzyme. This aminoacid change abolishes AVI binding to the KPC active site, hence inhibition is impaired. However, this substitution also decreases KPC-mediated resistance to carbapenems ("see-saw" effect). The goal of this work was to characterize the in vivo acquisition of CAZ/AVI resistance through D179Y substitution in a KPC-PA isolated from a hospitalized patient after CAZ/AVI treatment. Two KPC-PA isolates were obtained. The first isolate, PA-1, was obtained before CAZ/AVI treatment and was susceptible to CAZ/AVI. The second isolate, PA-2, was obtained after CAZ/AVI treatment and exhibited high-level CAZ/AVI resistance. Characterization of isolates PA-1 and PA-2 was performed through short and long-read whole genome sequencing analysis. The hybrid assembly showed that PA-1 and PA-2A had a single plasmid of 54,030 bp, named pPA-1 and pPA-2 respectively. Each plasmid harbored two copies of the bla KPC-containing Tn4401b transposon. However, while pPA-1 carried two copies of bla KPC-2, pPA-2 had one copy of bla KPC-2 and one copy of bla KPC-33, the allele with the D179Y substitution. Interestingly, isolate PA-2 did not exhibit the "see-saw" effect. The bla KPC-33 allele was detected only through hybrid assembly using a long-read-first approach. The present work describes a KPC-PA isolate harboring a plasmid-borne CAZ/AVI resistance mechanism based on two copies of bla KPC-2-Tn4401b and D179Y mutation in one of them, that is not associated with loss of resistance to carbapenems. These findings highlight the usefulness of a fine-tuned combined analysis of short and long-read data to detect similar emerging resistance mechanisms.


Assuntos
Ceftazidima , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos , Carbapenêmicos/farmacologia , Ceftazidima/farmacologia , Combinação de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Mutação , Porinas/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo
6.
PLoS One ; 17(8): e0273088, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35960734

RESUMO

The rise in antibiotic resistance has stimulated research into adjuvants that can improve the efficacy of broad-spectrum antibiotics. Lactoferrin is a candidate adjuvant; it is a multifunctional iron-binding protein with antimicrobial properties. It is known to show dose-dependent antimicrobial activity against Staphylococcus aureus through iron sequestration and repression of ß-lactamase expression. However, S. aureus can extract iron from lactoferrin through siderophores for their growth, which confounds the resolution of lactoferrin's method of action. We measured the minimum inhibitory concentration (MIC) for a range of lactoferrin/ ß-lactam antibiotic dose combinations and observed that at low doses (< 0.39 µM), lactoferrin contributes to increased S. aureus growth, but at higher doses (> 6.25 µM), iron-depleted native lactoferrin reduced bacterial growth and reduced the MIC of the ß-lactam-antibiotic cefazolin. This differential behaviour points to a bacterial population response to the lactoferrin/ ß-lactam dose combination. Here, with the aid of a mathematical model, we show that lactoferrin stratifies the bacterial population, and the resulting population heterogeneity is at the basis of the dose dependent response seen. Further, lactoferrin disables a sub-population from ß-lactam-induced production of ß-lactamase, which when sufficiently large reduces the population's ability to recover after being treated by an antibiotic. Our analysis shows that an optimal dose of lactoferrin acts as a suitable adjuvant to eliminate S. aureus colonies using ß-lactams, but sub-inhibitory doses of lactoferrin reduces the efficacy of ß-lactams.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Ferro/metabolismo , Lactoferrina/metabolismo , Lactoferrina/farmacologia , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia
7.
Infect Genet Evol ; 102: 105301, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35568334

RESUMO

OBJECTIVES: The Enterobacter cloacae complex is responsible for a variety of infections in hospitalized patients and is resistant to ß-lactam antibiotics owing to the expression of AmpC ß-lactamase. We report emerging resistance in Enterobacter roggenkampii exposed to ceftriaxone and explore the mechanism underlying mutations responsible for this resistance. METHODS: Three strains were derived from different samples from one patient (blood and liver abscess fluid). Antimicrobial susceptibility was evaluated by standard broth microdilution, while ampC expression was determined via RT-PCR. Genetic relatedness was evaluated via pulsed-field gel electrophoresis (PFGE). Species identification and comparative genome analysis were performed via genome sequencing. Mutation rate testing and selection of AmpC-derepressed mutants were conducted to explore the mutation mechanism. RESULTS: E. roggenkampii F1247 was susceptible to third-generation cephalosporins (3GCs); F95 and F1057, found in blood sample on day 11 and liver abscess drainage fluid on day 25, were resistant. ampC expression was 341- and 642-fold higher in F95 and F1057, respectively, than in F1247. Three isolates were the same PFGE and sequence types (ST1778) and were highly homologous (2 and 4 core genome single nucleotide polymorphism differences). Compared to F1247, F95 possessed a 575 bp deletion, including 537 bp of ampD, whereas F1057 harbored only one amino acid mutation (Leu140Pro in ampD). The mutation rates from F1247 exposure to cefotaxime, ceftazidime, ceftriaxone, piperacillin-tazobactam, and cefepime were (1.90 ± 0.21) × 10-8, (3.18 ± 0.43) × 10-8, (2.00 ± 0.20) × 10-8, (2.92 ± 0.29) × 10-9, and zero, respectively. In vitro-selected mutations responsible for resistance were identified in ampD, ampR, and dacB. CONCLUSIONS: E. roggenkampii may develop resistance in vivo and in vitro upon exposure to 3GCs and to a lesser extent to piperacillin-tazobactam. 3GCs should not be used as a monotherapy for E. roggenkampii infections. Therapy using cefepime or carbapenems may be preferred to piperacillin-tazobactam in the treatment of E. roggenkampii, especially if source control is difficult.


Assuntos
Ceftriaxona , Abscesso Hepático , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cefepima , Ceftriaxona/farmacologia , Ceftriaxona/uso terapêutico , Farmacorresistência Bacteriana , Enterobacter , Enterobacter cloacae/genética , Humanos , Abscesso Hepático/tratamento farmacológico , Testes de Sensibilidade Microbiana , Mutação , Piperacilina , Tazobactam , beta-Lactamases/metabolismo
8.
J Infect Public Health ; 15(5): 545-549, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35461077

RESUMO

OBJECTIVE: Klebsiella pneumoniae carbapenemase (KPC)-producing K.pneumoniae has represented a serious health problem in worldwide. The resistance to ceftazidime-avibactam (CAZ-AVI) began to emerge since its approval in 2015. We aim to explore the resistance mechanism of CAZ-AVI. METHODS: Phenotypic test and whole-genome sequencing (WGS) analysis were performed in KP-HX0917 and KP-HX1016 Klebsiella pneumoniae isolates, collected from the same patient following treatment with CAZ-AVI. RESULTS: We report a case of emergence of CAZ-AVI resistance in ST 11 KPC-2-producing K. pneumoniae (KP-HX1016) during 14 days of exposure with CZA-AVI. Molecular analysis highlighted the A533C mutation in the blaKPC-2 gene, resulting a D179A substitution in protein sequence, which restored the hydrolysis ability of imipenem and meropenem, but not for ertapenem, and the result of phenotypic test was negative. However, KP-HX0917 produced serine-carbapenemase by phenotypic detection and lost its capacity of hydrolyzing carbapenems. CONCLUSION: The emergence of CAZ-AVI resistance should arouse our attention, the susceptibility testing should be followed by a combination of phenotypic and molecular methods, to make sure that no potential carbapenemase-producing bacteria are missed.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Ceftazidima , Combinação de Medicamentos , Humanos , Klebsiella , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Testes de Sensibilidade Microbiana , Mutação , beta-Lactamases/genética , beta-Lactamases/metabolismo
9.
Elife ; 112022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35025730

RESUMO

Antimicrobial resistance in Gram-negative bacteria is one of the greatest threats to global health. New antibacterial strategies are urgently needed, and the development of antibiotic adjuvants that either neutralize resistance proteins or compromise the integrity of the cell envelope is of ever-growing interest. Most available adjuvants are only effective against specific resistance proteins. Here, we demonstrate that disruption of cell envelope protein homeostasis simultaneously compromises several classes of resistance determinants. In particular, we find that impairing DsbA-mediated disulfide bond formation incapacitates diverse ß-lactamases and destabilizes mobile colistin resistance enzymes. Furthermore, we show that chemical inhibition of DsbA sensitizes multidrug-resistant clinical isolates to existing antibiotics and that the absence of DsbA, in combination with antibiotic treatment, substantially increases the survival of Galleria mellonella larvae infected with multidrug-resistant Pseudomonas aeruginosa. This work lays the foundation for the development of novel antibiotic adjuvants that function as broad-acting resistance breakers.


Antibiotics, like penicillin, are the foundation of modern medicine, but bacteria are evolving to resist their effects. Some of the most harmful pathogens belong to a group called the 'Gram-negative bacteria', which have an outer layer ­ called the cell envelope ­ that acts as a drug barrier. This envelope contains antibiotic resistance proteins that can deactivate or repel antibiotics or even pump them out of the cell once they get in. One way to tackle antibiotic resistance could be to stop these proteins from working. Proteins are long chains of building blocks called amino acids that fold into specific shapes. In order for a protein to perform its role correctly, it must fold in the right way. In bacteria, a protein called DsbA helps other proteins fold correctly by holding them in place and inserting links called disulfide bonds. It was unclear whether DsbA plays a role in the folding of antibiotic resistance proteins, but if it did, it might open up new ways to treat antibiotic resistant infections. To find out more, Furniss, Kaderabkova et al. collected the genes that code for several antibiotic resistance proteins and put them into Escherichia coli bacteria, which made the bacteria resistant to antibiotics. Furniss, Kaderabkova et al. then stopped the modified E. coli from making DsbA, which led to the antibiotic resistance proteins becoming unstable and breaking down because they could not fold correctly. Further experiments showed that blocking DsbA with a chemical inhibitor in other pathogenic species of Gram-negative bacteria made these bacteria more sensitive to antibiotics that they would normally resist. To demonstrate that using this approach could work to stop infections by these bacteria, Furniss, Kaderabkova et al. used Gram-negative bacteria that produced antibiotic resistance proteins but could not make DsbA to infect insect larvae. The larvae were then treated with antibiotics, which increased their survival rate, indicating that blocking DsbA may be a good approach to tackling antibiotic resistant bacteria. According to the World Health Organization, developing new treatments against Gram-negative bacteria is of critical importance, but the discovery of new drugs has ground to a halt. One way around this is to develop ways to make existing drugs work better. Making drugs that block DsbA could offer a way to treat resistant infections using existing antibiotics in the future.


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Mariposas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Adjuvantes Farmacêuticos , Animais , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Genes Bacterianos , Larva/microbiologia , Testes de Sensibilidade Microbiana , Dobramento de Proteína , beta-Lactamases/genética , beta-Lactamases/metabolismo
10.
Eur J Hosp Pharm ; 29(2): 113-115, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34716170

RESUMO

The case of a female who had an accident that caused an open fracture is reported. During hospitalisation, Verona integron-encoded metallo-ß-lactamase (VIM)-producing Klebsiella pneumoniae was isolated. Antimicrobial susceptibility testing revealed resistance to ß-lactam antibiotics, quinolones, trimethoprim/sulfamethoxazole, and susceptibility to tigecycline, colistin, fosfomycin and aminoglycosides. Synergistic activity of ceftazidime-avibactam and aztreonam was proved in vitro and a combined therapy with tigecycline was started. Combination with aminoglycosides was ruled out as it was not described in the literature and also in order to avoid side effects. Colistin was rejected because of its nephrotoxicity profile. The antibiotic treatment was assessed by a multidisciplinary team with a pharmacist who closely monitored adverse effects and interactions with other drugs. The total duration of this combination was 25 days, without any adverse events reported. Fourteen weeks after the accident the patient was discharged. After 2 months of follow-up neither relapses nor reinfections have been reported.


Assuntos
Aztreonam , Ceftazidima , Compostos Azabicíclicos , Aztreonam/farmacologia , Aztreonam/uso terapêutico , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Combinação de Medicamentos , Feminino , Humanos , Integrons , Klebsiella pneumoniae/metabolismo , Testes de Sensibilidade Microbiana , beta-Lactamases/metabolismo , beta-Lactamases/farmacologia
11.
J Antimicrob Chemother ; 77(3): 711-718, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34969066

RESUMO

BACKGROUND: Neonatal sepsis is a serious and frequently lethal infection, often complicated by antimicrobial resistance (including ESBLs) in low- and middle-income countries (LMICs). Flomoxef is an off-patent oxacephem ß-lactam with stability against non-AmpC ESBLs, with potential for utility in these settings. To date, there has been no published flomoxef neonatal population pharmacokinetic (PopPK) model. OBJECTIVES: To summarize the clinical data available for flomoxef, build a neonatal PopPK model and assess the adequacy of different neonatal flomoxef regimens. METHODS: A systematic literature search returned all available clinical or pharmacokinetic data of flomoxef use in neonates. Pharmacokinetic data were used to construct a PopPK model, with progressive incorporation of covariates into the final model. Monte Carlo simulations were performed using this final model to simulate drug exposures of different flomoxef regimens to calculate PTAs. RESULTS: Individual-level clinical and pharmacokinetic data were extracted for 313 and 146 neonates, respectively, with population clinical data extracted for a further 199 neonates. Clinical and microbiological success rates were 89.71% and 82.8%, respectively, with minimal side effects. The final PopPK model incorporated body weight and postnatal age as covariates. PTA analyses predicted that IV regimens of 20 mg/kg q12h, 20 mg/kg q6-8h and 40 mg/kg q6-8h are adequate for neonates aged 0-7, 7-14 and 14-28 days, respectively. CONCLUSIONS: To the best of our knowledge, this is the first published neonatal PopPK model for flomoxef. Given the high treatment success rates, low toxicity rates and off-patent status, this drug has potential for use in the treatment of neonatal sepsis in ESBL-prevalent LMIC settings.


Assuntos
Sepse Neonatal , Antibacterianos/uso terapêutico , Cefalosporinas , Humanos , Recém-Nascido , Testes de Sensibilidade Microbiana , Sepse Neonatal/tratamento farmacológico , beta-Lactamases/metabolismo
12.
Microbiol Spectr ; 9(2): e0046421, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34704795

RESUMO

The objective of this study was to evaluate whether the addition of the Verigene BC-GN molecular rapid diagnostic test to standard antimicrobial stewardship practices (mRDT + ASP) decreased the time to optimal and effective antimicrobial therapy for patients with extended-spectrum beta-lactamase (ESBL)- and carbapenemase-producing Escherichia coli and Klebsiella pneumoniae bloodstream infections (BSI) compared to conventional microbiological methods with ASP (CONV + ASP). This was a multicenter, retrospective cohort study evaluating the time to optimal antimicrobial therapy in 5 years of patients with E. coli or K. pneumoniae BSI determined to be ESBL- or carbapenemase-producing by mRDT and/or CONV. Of the 378 patients included (mRDT + ASP, n = 164; CONV + ASP, n = 214), 339 received optimal antimicrobial therapy (mRDT + ASP, n = 161; CONV + ASP, n = 178), and 360 (mRDT + ASP, n = 163; CONV + ASP, n = 197) received effective antimicrobial therapy. The mRDT + ASP demonstrated a statistically significant decrease in the time to optimal antimicrobial therapy (20.5 h [interquartile range (IQR), 17.0 to 42.2 h] versus 50.1 h [IQR, 27.6 to 77.9 h]; P < 0.001) and the time to effective antimicrobial therapy (15.9 h [IQR, 1.9 to 25.7 h] versus 28.0 h [IQR, 9.5 to 56.7 h]; P < 0.001) compared to CONV + ASP, respectively. IMPORTANCE Our study supports the additional benefit of molecular rapid diagnostic test in combination with timely antimicrobial stewardship program (ASP) intervention on shortening the time to both optimal and effective antimicrobial therapy in patients with ESBL- or carbapenemase-producing Escherichia coli and Klebsiella pneumoniae bloodstream infections, compared to conventional microbiological methods and ASP. Gram-negative infections are associated with significant morbidity and mortality, often resulting in life-threatening organ dysfunction. Both resistance phenotypes confer resistance to many of our first-line antimicrobial agents with carbapenemase-producing Enterobacterales requiring novel beta-lactam and beta-lactamase inhibitor combinations or other susceptible non-beta-lactam antibiotics for treatment. National resistance trends in a cohort of hospitalized patients at U.S. hospitals during our study period demonstrate the increasing incidence of both resistance phenotypes, reinforcing the generalizability and timeliness of such analysis.


Assuntos
Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Proteínas de Bactérias/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/efeitos dos fármacos , beta-Lactamases/metabolismo , Adulto , Idoso , Gestão de Antimicrobianos , Bacteriemia/diagnóstico , Bacteriemia/microbiologia , Proteínas de Bactérias/genética , Testes Diagnósticos de Rotina , Prescrições de Medicamentos , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/microbiologia , Feminino , Humanos , Infecções por Klebsiella/diagnóstico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Estudos Retrospectivos , beta-Lactamases/genética
13.
PLoS One ; 16(9): e0257217, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34529722

RESUMO

OBJECTIVES: We need studies assessing therapeutic options for oral relay in febrile urinary tract infection (FUTI) due to ESBL-producing Enterobacteriaceae (ESBL-E) in children. Amoxicillin-clavulanate/cefixime (AC-cefixime) combination seems to be a suitable option. We sought to describe the risk of recurrence at 1 month after the end of treatment for FUTI due to ESBL-E according to the oral relay therapy used. MATERIALS AND METHODS: We retrospectively identified children <18 years who were included in a previous prospective observational multicentric study on managing FUTI due to ESBL-E between 2014 and 2017 in France. We collected whether children who received cotrimoxazole, ciprofloxacin or the AC-cefixime combination as the oral relay therapy reported a recurrence within the first month after the end of treatment. Then, we analyzed the susceptibility drug-testing of the strains involved. RESULTS: We included 199 children who received an oral relay therapy with cotrimoxazole (n = 72, 36.2%), ciprofloxacin (n = 38, 19.1%) or the AC-cefixime combination (n = 89, 44.7%). Nine (4.5%) patients had a recurrence within the first month after the end of treatment, with no difference between the 3 groups of oral relay (p = 0.8): 4 (5.6%) cotrimoxazole, 2 (5.3%) ciprofloxacin and 3 (3.4%) AC-cefixime combination. Phenotype characterization of 249 strains responsible for FUTI due to ESBL-E showed that 97.6% were susceptible to the AC-cefixime combination. CONCLUSIONS: The AC-cefixime combination represents an interesting therapeutic option for oral relay treatment of FUTI due to ESBL-E as the recurrence rate at 1 month after the end of treatment was the same when compared to cotrimoxazole and ciprofloxacin.


Assuntos
Enterobacteriaceae/metabolismo , Febre/tratamento farmacológico , Infecções Urinárias/tratamento farmacológico , beta-Lactamases/metabolismo , Administração Oral , Adolescente , Combinação Amoxicilina e Clavulanato de Potássio/administração & dosagem , Cefixima/administração & dosagem , Criança , Pré-Escolar , Ciprofloxacina/administração & dosagem , Feminino , Febre/microbiologia , França , Humanos , Lactente , Recém-Nascido , Masculino , Testes de Sensibilidade Microbiana , Fenótipo , Recidiva , Estudos Retrospectivos , Risco , Resultado do Tratamento , Combinação Trimetoprima e Sulfametoxazol/administração & dosagem , Infecções Urinárias/microbiologia
14.
Eur J Clin Microbiol Infect Dis ; 40(11): 2371-2377, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34175999

RESUMO

In our tertiary care center, the reported susceptibility of E. coli blood isolates to amoxicillin/clavulanic acid exceeded 90% in 2005 and showed a progressive decrease to 50% by 2017. In this study, we investigate whether there is a real increase in resistant E. coli strains or if this apparent decline in reported susceptibility might be attributed to the substitution of CLSI by EUCAST guidelines in 2014. We randomly selected 237 E. coli blood isolates (stored at - 80 °C) from 1985 to 2018 and reassessed their MIC values, applying both the CLSI (fixed ratio of clavulanic acid) and EUCAST guidelines (fixed concentration of clavulanic acid). In parallel, the susceptibility of these isolates was retested by disk diffusion, according to the EUCAST guidelines. Whole genome sequencing was successfully performed on 233 of the 237 isolates. In only 130 of the 237 isolates (55.0%), testing according to the EUCAST and CLSI criteria delivered identical MIC values for amoxicillin/clavulanic acid. In 64 of the 237 isolates (27.0%), the MIC values diverged one dilution; in 38 (16.0%), two dilutions; and in five (2.1%), three dilutions. From these 107 discrepant results, testing according to EUCAST methodology revealed more resistant profiles in 93 E. coli strains (94.1%). Also, phenotypical susceptibility testing according to EUCAST guidelines tends to correlate better with the presence of beta-lactamase genes compared to CLSI testing procedure. This study highlights the low agreement between EUCAST and CLSI methodologies when performing MIC testing of amoxicillin/clavulanic acid. More strains are categorized as resistant when EUCAST guidelines are applied. The low agreement between EUCAST and CLSI was confirmed by WGS, since most of EUCAST resistant/CLSI sensitive isolates harbored beta-lactamase genes.


Assuntos
Combinação Amoxicilina e Clavulanato de Potássio/uso terapêutico , Antibacterianos/uso terapêutico , Infecções por Escherichia coli/microbiologia , Escherichia coli/efeitos dos fármacos , Combinação Amoxicilina e Clavulanato de Potássio/normas , Antibacterianos/normas , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Farmacorresistência Bacteriana , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/fisiologia , Infecções por Escherichia coli/tratamento farmacológico , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Europa (Continente) , Humanos , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , beta-Lactamases/metabolismo
15.
Int J Antimicrob Agents ; 58(1): 106361, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34000372

RESUMO

OBJECTIVES: To compare the efficacy of temocillin with carbapenems for extended spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae urinary tract infections (ESBL-E UTI). METHODS: A multicenter retrospective case-control study of adults with ESBL-E UTI was conducted between January 2015 and October 2019. Cases received temocillin ≥ 50% of the effective antibiotic therapy duration and controls exclusively received carbapenem; they were statistically matched (1:1 ratio) on 6-month period, sex and age. The clinical cure at the end of antibiotic therapy was analysed using conditional logistic regression. RESULTS: Seventy-two temocillin cases were matched to 72 carbapenem controls. Most (67%) were male, median age was 69.4 years, 81 (56%) were immunocompromised, including 44 (31%) solid organ transplant recipients. There was no difference between cases and controls for baseline characteristics and microorganisms involved: Klebsiella pneumoniae in 59 (41%), Escherichia coli in 57 (40%), and Enterobacter spp. in 24 (17%). The median time from admission to effective antibiotic therapy was 0 days [range, 0-2]. Among cases, first-line antibiotic therapy (≤ 72 hours) was temocillin in six (8%) and carbapenems in 39 (54%). Temocillin was given at the median daily dose of 4 g [range, 2-4] after 3 days [range, 2-5] of carbapenems. Patients received temocillin for 81% [range, 70-93] of the effective antibiotic course duration over 11 days [range, 8-14]. The effective antibiotic duration was similar in cases and controls (P = 0.067). Clinical cure at the end of antibiotic therapy was 94% (68/72) in cases vs. 99% (71/72) in controls (P = 0.206), with no difference among immunocompromised and solid organ transplant patients (P > 0.050). CONCLUSIONS: Temocillin effectively relayed ß-lactams, including carbapenems, to treat (complicated) ESBL-E UTI. Its efficacy was consistent among kidney transplant recipients.


Assuntos
Carbapenêmicos/farmacologia , Infecções por Enterobacteriaceae/dietoterapia , Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae/efeitos dos fármacos , Penicilinas/uso terapêutico , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , Idoso , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento , beta-Lactamases/metabolismo , beta-Lactamases/farmacologia
16.
Eur J Clin Microbiol Infect Dis ; 40(7): 1393-1397, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33502648

RESUMO

Pharmacological and clinical data regarding cefoxitin for the treatment of ESBL-producing Enterobacteriaceae-related infections are limited. We performed a multicentric prospective cohort study to evaluate continuous/prolonged, or intermittent infusion of cefoxitin. We assessed the plasma concentration as a function of the duration of infusion and then performed a simulation of the percentage of patients who would reach the PK/PD targets, set at 100% ƒT> MIC or 100% ƒT>4 MIC. Eighty-one patients were included. All patients were treated with 6 gr./day. MICs to cefoxitin ranged from 0.5 to 64 mg/L. Sixteen (19.7%) patients were infected with strains with cefoxitin MICs ≥ 8 mg/L. In all patients infected with strains with MICs ≤ 6 mg/L, PK/PD objectives (100% ƒT> MIC) were achieved with prolonged or continuous infusion. In contrast, when MICs were 8 mg/L only, continuous infusion was sufficient to achieve the PK/PD objectives (100% ƒT> MIC). Extended infusion of cefoxitin is necessary for the treatment of non-UTI ESBL-related infections.


Assuntos
Antibacterianos/uso terapêutico , Cefoxitina/uso terapêutico , Infecções por Enterobacteriaceae/tratamento farmacológico , beta-Lactamases/metabolismo , Idoso , Monitoramento de Medicamentos , Farmacorresistência Bacteriana Múltipla , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , beta-Lactamases/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-33486218

RESUMO

The screening and identification of bioactive components, which are effectively resistant to metallo-beta-lactamase (MßL), were studied in the alcohol extract of Schisandra chinensis (Turcz.) Baill. by metalloenzyme-immobilized affinity chromatography. Taking bizinc metalloenzyme beta-lactamase II from Bacillus cereus (Bc II) and monozinc metalloenzyme CphA from aeromonas hydrophila (CphA) as examples, we studied the feasibility of this scheme based on the construction of metalloenzyme-immobilized chromatographic model. It was found that the Bc II- and CphA-immobilized chromatographic column could be used not only to explore the interaction between the MßL and their specific ligands, but also to screen the bioactive components from traditional Chinese medicine. The Bc II-and CphA-immobilized columns were used to screen the bioactive components from the alcohol extract of Schisandra chinensis (Turcz.) Baill. Time-of-flight tandem mass spectrometry analysis and molecular docking revealed that isobutyl 3-O-sulfo-ß-D-galactopyranoside is the effective bioactive components that could bind with metalloenzyme Bc II. It is believed that our current work may provide a methodological reference for screening MßL inhibitors from traditional Chinese medicine.


Assuntos
Proteínas de Bactérias/metabolismo , Cefalosporinase/metabolismo , Descoberta de Drogas/métodos , Extratos Vegetais/análise , Schisandra/química , beta-Lactamases/metabolismo , Proteínas de Bactérias/química , Cefalosporinase/química , Cromatografia de Afinidade , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Galactosídeos/análise , Galactosídeos/química , Galactosídeos/metabolismo , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/metabolismo , beta-Lactamases/química
18.
Diagn Microbiol Infect Dis ; 99(1): 115227, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33086177

RESUMO

Existing data support the combination of aztreonam and ceftazidime-avibactam against serine-ß-lactamase (SBL)- and metallo-ß-lactamase (MBL)-producing Enterobacterales, although there is a paucity of data against SBL- and MBL-producing Pseudomonas aeruginosa. In this study, 5 SBL- and MBL-producing P. aeruginosa (1 IMP, 4 VIM) were evaluated against aztreonam and ceftazidime-avibactam alone and in combination via broth microdilution and time-kill analyses. All 5 isolates were nonsusceptible to aztreonam, aztreonam-avibactam, and ceftazidime-avibactam. Combining aztreonam with ceftazidime-avibactam at subinhibitory concentrations produced synergy and restored bactericidal activity in 4/5 (80%) isolates tested. These results suggest that the combination of aztreonam and ceftazidime-avibactam may be a viable treatment option against SBL- and MBL-producing P. aeruginosa.


Assuntos
Antibacterianos/uso terapêutico , Compostos Azabicíclicos/uso terapêutico , Ceftazidima/uso terapêutico , Pseudomonas aeruginosa/efeitos dos fármacos , Inibidores de beta-Lactamases/uso terapêutico , Aztreonam/uso terapêutico , Combinação de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/metabolismo , beta-Lactamases/metabolismo
19.
Microb Drug Resist ; 27(2): 162-169, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32429775

RESUMO

This study was performed to elucidate genetic relatedness and molecular resistance mechanisms of AmpC-producing multidrug-resistant Proteus mirabilis isolates in University Hospital of Split (UHS), and define efficient antibiotics in vitro. A total of 100 nonrepeated, consecutive, amoxicillin/clavulanate- and cefoxitin-resistant P. mirabilis isolates were collected, mostly from urine (44%) and skin and soft-tissue samples (30%). They were all positive in cefoxitin Hodge test and negative for extended spectrum beta-lactamase production. Pulsed field gel electrophoresis identified four clusters and two singletons, with 79% of isolates in dominant cluster. Molecular characterization and I-CeuI analysis of representatives revealed blaCMY-16 gene located on chromosome, and insertion element ISEcp1 positioned 110 pb upstream of blaCMY-16 starting codon. They also harbored blaTEM-1, except one with blaTEM-2. They were all resistant to trimethoprim-sulfamethoxazole, all but one to quinolones, and 81% to all aminoglycosides, while 77% were susceptible (S) and 22% intermediate (I) to piperacillin/tazobactam, and 4% were S and 68% I to cefepime. Only 15% were S to ceftolozane/tazobactam. Meropenem, ertapenem, ceftazidime/avibactam, temocillin, and fosfomycin were 100% efficient in vitro. This is the first report of blaCMY-16 gene in P. mirabilis from hospital samples in Croatia. The findings are in accordance with Italian and Greek reports. The clonal nature of outbreak suggests the high potential of clonal spread. Alternative agents should be considered to spare carbapenem usage.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Infecções por Proteus/tratamento farmacológico , Proteus mirabilis/efeitos dos fármacos , Resistência beta-Lactâmica/efeitos dos fármacos , beta-Lactamases/metabolismo , Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Cefalosporinas/farmacologia , Croácia , Combinação de Medicamentos , Hospitais Universitários , Humanos , Testes de Sensibilidade Microbiana/métodos , Infecções por Proteus/microbiologia , Proteus mirabilis/metabolismo , Tazobactam/farmacologia
20.
Eur J Clin Microbiol Infect Dis ; 40(3): 461-475, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33009595

RESUMO

Increasing burden of carbapenem resistance and resultant difficult-to-treat infections are of particular concern due to the lack of effective and safe treatment options. More recently, several new agents with activity against certain multidrug-resistant (MDR) and extensive drug-resistant (XDR) Gram-negative pathogens have been approved for clinical use. These include ceftazidime-avibactam, meropenem-vaborbactam, imipenem-cilastatin-relebactam, plazomicin, and cefiderocol. For the management of MBL infections, clinically used triple combination comprising ceftazidime-avibactam and aztreonam is hindered due to non-availability of antimicrobial susceptibility testing methods and lack of information on potential drug-drug interaction leading to PK changes impacting its safety and efficacy. Moreover, in several countries including Indian subcontinent and developing countries, these new agents are yet to be made available. Under these circumstances, polymyxins are the only last resort for the treatment of carbapenem-resistant infections. With the recent evidence of suboptimal PK/PD particularly in lung environment, limited efficacy and increased nephrotoxicity associated with polymyxin use, the Clinical and Laboratory Standards Institute (CLSI) has revised both colistin and polymyxin B breakpoints. Thus, polymyxins 'intermediate' breakpoint for Enterobacterales, P. aeruginosa, and Acinetobacter spp. are now set at ≤ 2 mg/L, implying limited clinical efficacy even for isolates with the MIC value 2 mg/L. This change has questioned the dependency on polymyxins in treating XDR infections. In this context, recently approved cefiderocol and phase 3 stage combination drug cefepime-zidebactam assume greater significance due to their potential to act as polymyxin-supplanting therapies.


Assuntos
Antibacterianos/uso terapêutico , Polimixinas/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/normas , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Países em Desenvolvimento , Farmacorresistência Bacteriana/efeitos dos fármacos , Quimioterapia Combinada , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Testes de Sensibilidade Microbiana/normas , Polimixinas/farmacologia , Polimixinas/normas , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , beta-Lactamases/classificação , beta-Lactamases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA