Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(10): 5955-5963, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38415860

RESUMO

BACKGROUND: Food allergy has become a global public health problem. This study aimed to explore the possible anti-allergic effect of vitamin C (VC). A rat basophilic leukemia (RBL)-2H3 cell degranulation model was used to assess the effect of VC on degranulation in vitro, and an ovalbumin (OVA)-induced BALB/c mouse allergy model was used to assess the anti-allergy effect of VC in vivo. RESULTS: In vitro, VC significantly attenuated the release of ß-hexosaminidase, tryptase and histamine, and also reduced cytokine production (interleukins 4 and 6, tumor necrosis factor α) significantly (P < 0.05), with the inhibitory effect demonstrating a positive correlation with VC dose. In vivo, compared with the OVA group, the levels of serum immunoglobulins E and G1 of the VC low-dose (VCL) group (50 mg kg-1) and high-dose (VCH) group (200 mg·kg-1) were significantly reduced (P < 0.05). Furthermore, the plasma histamine level was also significantly decreased (P < 0.05). Moreover, TH2 cell polarization in mice of the VCL and VCH groups was significantly inhibited (P < 0.05), promoting the TH1/TH2 cell polarization balance. Additionally, VC treatment enhanced the expression of CD80 (P < 0.05) in spleen and small intestine tissues, while significantly inhibiting the expression of CD86 (P < 0.05); notably, high-dose VC treatment was more effective. CONCLUSION: VC exerted an anti-allergic effect through inhibiting degranulation and regulating TH1/TH2 cell polarization balance. © 2024 Society of Chemical Industry.


Assuntos
Antialérgicos , Ácido Ascórbico , Degranulação Celular , Hipersensibilidade Alimentar , Camundongos Endogâmicos BALB C , Células Th1 , Células Th2 , Animais , Células Th2/imunologia , Células Th2/efeitos dos fármacos , Antialérgicos/farmacologia , Camundongos , Ácido Ascórbico/farmacologia , Degranulação Celular/efeitos dos fármacos , Células Th1/imunologia , Células Th1/efeitos dos fármacos , Ratos , Hipersensibilidade Alimentar/tratamento farmacológico , Hipersensibilidade Alimentar/imunologia , Imunoglobulina E/imunologia , Humanos , Feminino , Masculino , Ovalbumina/imunologia , Ovalbumina/efeitos adversos , Citocinas/metabolismo , Citocinas/imunologia , beta-N-Acetil-Hexosaminidases/metabolismo
2.
J Ethnopharmacol ; 321: 117529, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042384

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Curcuma longa, known as turmeric, is an herbaceous perennial plant belonging to the genus Curcuma. It is dispersed throughout tropical and subtropical regions worldwide. Since ancient times, turmeric has been used as an ethnomedicinal plant in the Ayurvedic system, particularly in Asian countries. Rhizomes of turmeric possess several pharmacological properties that give high value as a medicinal remedy for treating a range of conditions, including inflammation, pain, allergies, and digestive issues. Moreover, turmeric leaves and pseudostems also contain a variety of health-enhancing secondary metabolites, such as curcumin, flavonoids, and other phenolic compounds, which exhibit anti-inflammatory, antitumor, antibacterial, and antioxidant properties. AIM OF THE STUDY: Allergic diseases are a group of immune-mediated disorders mainly caused by an immunoglobulin E (IgE)-dependent immunological response to an innocuous allergen. Therefore, this study aimed to investigate the effect of leaves and pseudostems extract of turmeric (TLSWE-8510) on IgE/bovine serum albumin (BSA)-stimulated allergic responses in mouse bone marrow-derived cultured mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) in BALB/c mice. MATERIALS AND METHODS: The effect of TLSWE-8510 on mast cell degranulation has been evaluated by investigating the release of ß-hexosaminidase and histamine in IgE/BSA-stimulated BMCMCs. Additionally, anti-allergic properties of TLSWE-8510 on IgE/BSA-stimulated BMCMCs were investigated using suppression of nuclear factor-kappa B (NF-κB), and spleen tyrosine kinase (Syk)-linker for T-cell activation (LAT)-extracellular-signal-regulated kinase (ERK)-GRB2 associated binding protein 2 (Gab2) signaling pathway and downregulation of allergy-related cytokines and chemokines expression. Furthermore, in vivo, studies were conducted using IgE-mediated PCA in BALB/c mice. RESULTS: TLSWE-8510 treatment significantly inhibited the degranulation of IgE/BSA-stimulated BMCMCs by inhibiting the release of ß-hexosaminidase and histamine dose-dependently. Additionally, TLSWE-8510 reduced the expression of high-affinity IgE receptors (Fc epsilon receptor I-FcεRI) on the surface of BMCMCs and the binding of IgE to FcεRI. Besides, the expression of cytokines and chemokines is triggered by IgE/BSA stimulation via activating the allergy-related signaling pathways. TLSWE-8510 dose-dependently downregulated the mRNA expression and the production of allergy-related cytokines (interleukin (IL)-1ß, IL-3, IL-4, IL-5, IL-6, IL-13, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ), and chemokines (thymus and activation-regulated chemokine (TARC), and regulated upon activation, normal T cell expressed and secreted (RANTES)) by regulating the phosphorylation of downstream signaling molecules, NF-κB, and Syk, LAT, ERK and Gab2 in IgE/BSA-stimulated BMCMCs. Moreover, PCA reaction in IgE/BSA-stimulated BALB/c mice ears was effectively decreased by TLSWE-8510 treatment in a dose-dependent manner. CONCLUSIONS: These results collectively demonstrated that TLSWE-8510 suppressed mast cell degranulation by inhibiting the release of chemical mediators related to allergies. TLSWE-8510 downregulated the allergy-related cytokines and chemokines expression and phosphorylation of downstream signaling molecules in IgE/BSA-stimulated BMCMCs. Furthermore, in vivo studies with IgE-mediated PCA reaction in the BALB/c mice ears were attenuated by TLSWE-8510 treatment. These findings revealed that TLSWE-8510 has the potential as a therapeutic agent for the treatment of allergic diseases.


Assuntos
Anafilaxia , Hipersensibilidade , Camundongos , Animais , Imunoglobulina E , Curcuma , Soroalbumina Bovina , NF-kappa B/metabolismo , Histamina/metabolismo , Mastócitos , Anafilaxia Cutânea Passiva , Camundongos Endogâmicos BALB C , Medula Óssea , Hipersensibilidade/tratamento farmacológico , Citocinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Quimiocinas/metabolismo , Degranulação Celular
3.
Plant Physiol Biochem ; 197: 107663, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36989986

RESUMO

Momordica charantia seeds are known to contain a galactose specific lectin that has been well characterized. Seed extracts also contain glycosidases such as the ß-hexosaminidase, α-mannosidase and α-galactosidase. In the present study, lectin was affinity purified from the seed extracts and protein bodies isolated by sucrose density gradient centrifugation. From the protein bodies, lectin was identified and ß-hexosaminidase was isolated by lectin affinity chromatography and subsequently separated from other glycosidases by gel filtration. In the native PAGE, the purified ß-hexosaminidase migrated as a single band with a molecular weight of ∼235 kDa and by zymogram analysis using 4-methylumbelliferyl N-acetyl-ß-D-glucosaminide substrate it was confirmed as ß-hexosaminidase. Under reducing conditions in SDS-PAGE, the purified enzyme dissociated into three bands (Mr 33, 20 and 15 kDa). The prominent bands (20 and 15 kDa) showed immunological cross-reactivity with the human Hexosaminidase B antibody in a western blot experiment. In gel digestion of the purified enzyme, followed by proteomic analysis using tandom MS/MS revealed sequence identity as compared to the genomic sequence of the Momordica charantia with a score of 57 (24% sequence coverage). Additionally, by CD analysis the purified ß-hexosaminidase showed 39.1% of α-helix. Furthermore, secondary structure variations were observed in presence of substrate, lectin and at different pH values. Protein body membrane prepared from the isolated protein bodies showed a pH dependent interaction with the purified lectin and mixture of glycosidases.


Assuntos
Lectinas , Momordica charantia , Humanos , Glicosídeo Hidrolases/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Espectrometria de Massas em Tandem , Proteômica , Sementes/metabolismo , Extratos Vegetais/metabolismo
4.
J Cereb Blood Flow Metab ; 41(11): 3111-3126, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34176340

RESUMO

Repetitive hypoxia (RH) exposure affects the initiation and progression of cognitive dysfunction, but little is known about the mechanisms of hypoxic brain damage. In this study, we show that sublethal RH increased anxiety, impaired learning and memory (L/M), and triggered downregulation of brain levels of glucose and several glucose metabolites in zebrafish, and that supplementation of glucose or glucosamine (GlcN) restored RH-induced L/M impairment. Fear conditioning (FC)-induced brain activation of and PKA/CREB signaling was abrogated by RH, and this effect was reversed by GlcN supplementation. RH was associated with decreased brain O-GlcNAcylation and an increased O-GlcNAcase (OGA) level. RH increased brain inflammation and p-Tau and amyloid ß accumulation, and these effects were suppressed by GlcN. Our observations collectively suggest that changes in O-GlcNAc flux during hypoxic exposure could be an important causal factor for neurodegeneration, and that supplementation of the HBP/O-GlcNAc flux may be a potential novel therapeutic or preventive target for addressing hypoxic brain damage.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/metabolismo , Glucosamina/farmacologia , Hipóxia/metabolismo , Peixe-Zebra/metabolismo , Proteínas tau/metabolismo , Animais , Ansiedade/metabolismo , Encéfalo/metabolismo , Estudos de Casos e Controles , Disfunção Cognitiva/etiologia , Encefalite/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glucosamina/metabolismo , Glucosamina/uso terapêutico , Glucose/metabolismo , Hipóxia/complicações , Hipóxia Encefálica/metabolismo , Hipóxia Encefálica/prevenção & controle , Deficiências da Aprendizagem/metabolismo , Masculino , Transtornos da Memória/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo
5.
Molecules ; 25(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899766

RESUMO

Allergic rhinitis and asthma are common chronic allergic diseases of the respiratory tract, which are accompanied by immunoglobulin E (IgE)-mediated inflammation and the involvement of type 2 T helper cells, mast cells, and eosinophils. Cordyceps sinensis (Berk.) Sacc is a fungal parasite on the larva of Lepidoptera. It has been considered to be a health-promoting food and, also, one of the best-known herbal remedies for the treatment of airway diseases, such as asthma and lung inflammation. In the present study, we demonstrated the antiallergic rhinitis effect of Cs-4, a water extract prepared from the mycelium culture of Cordyceps sinensis (Berk) Sacc, on ovalbumin (OVA)-induced allergic rhinitis in mice and the anti-asthmatic effect of Cs-4 in a rat model of asthma. Treatment with Cs-4 suppressed the nasal symptoms induced in OVA-sensitized and challenged mice. The inhibition was associated with a reduction in IgE/OVA-IgE and interleukin (IL)-4/IL-13 levels in the nasal fluid. Cs-4 treatment also decreased airway responsiveness and ameliorated the scratching behavior in capsaicin-challenged rats. It also reduced plasma IgE levels, as well as IgE and eosinophil peroxidase levels, in the bronchoalveolar fluid. Cs-4 treatment completely suppressed the increases in IL-4, IL-5, and IL-13 levels in rat lung tissue. In conclusion, our results suggest that Cs-4 has the potential to alleviate immune hypersensitivity reactions in allergic rhinitis and asthma.


Assuntos
Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Cordyceps/química , Micélio/química , Rinite Alérgica/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Asma/sangue , Asma/complicações , Asma/fisiopatologia , Peso Corporal/efeitos dos fármacos , Brônquios/efeitos dos fármacos , Hiper-Reatividade Brônquica/sangue , Hiper-Reatividade Brônquica/complicações , Hiper-Reatividade Brônquica/tratamento farmacológico , Hiper-Reatividade Brônquica/fisiopatologia , Líquido da Lavagem Broncoalveolar , Capsaicina/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Peroxidase de Eosinófilo/metabolismo , Feminino , Liberação de Histamina/efeitos dos fármacos , Imunização , Imunoglobulina E/sangue , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Cloreto de Metacolina/farmacologia , Camundongos Endogâmicos BALB C , Lavagem Nasal , Ovalbumina/imunologia , Ratos Sprague-Dawley , Rinite Alérgica/sangue , Rinite Alérgica/complicações , Pele/efeitos dos fármacos , Pele/patologia , Baço/efeitos dos fármacos , Baço/patologia , Traqueia/efeitos dos fármacos , beta-N-Acetil-Hexosaminidases/metabolismo
6.
Molecules ; 25(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887288

RESUMO

In the present study the effects and molecular mechanisms of wheat bran (WB), the hard outer layer of the wheat kernel used in food ingredients, on mast cell-mediated allergic responses in vitro and in vivo were investigated. The water extract of WB inhibited degranulation and expression of allergic and inflammatory mediators such as tumor necrosis factor-α, cyclooxygenase-2 and inducible nitric oxide synthase in antigen-stimulated RBL-2H3 cells. These anti-allergic activities of WB were mediated by the inactivation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase, which play important roles in degranulation and expression of various allergic and inflammatory molecules. In agreement with its in vitro effects, WB inhibited immunoglobulin E (IgE)/antigen-induced and compound 48/80-induced anaphylactic reactions in vivo. Taken together, these findings suggest the pharmacological potential of WB in the regulation of allergic diseases, including allergic rhinitis, atopic dermatitis, asthma and anaphylaxis.


Assuntos
Fibras na Dieta/farmacologia , Hipersensibilidade/patologia , Mastócitos/patologia , Extratos Vegetais/farmacologia , Animais , Antígenos/imunologia , Degranulação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Imunoglobulina E/metabolismo , Mediadores da Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Mastócitos/fisiologia , Camundongos Endogâmicos BALB C , Anafilaxia Cutânea Passiva/efeitos dos fármacos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , p-Metoxi-N-metilfenetilamina/farmacologia
7.
Molecules ; 25(12)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575718

RESUMO

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) are serious clinical complications with a high frequency of morbidity and mortality. The initiation and amplification of inflammation is a well-known aspect in the pathogenesis of ALI and related disorders. Therefore, inhibition of the inflammatory mediators could be an ideal approach to prevent ALI. Epigallocatechin-3-gallate (EGCG), a major constituent of green tea, has been shown to have protective effects on oxidative damage and anti-inflammation. The goal of the present study was to determine whether EGCG improves phenotype and macrophage polarisation in LPS-induced ALI. C57BL/6 mice were given two doses of EGCG (15 mg/kg) intraperitoneally (IP) 1 h before and 3 h after LPS instillation (2 mg/kg). EGCG treatment improved histopathological lesions, Total Leucocyte count (TLC), neutrophils infiltration, wet/dry ratio, total proteins and myeloperoxidase (MPO) activity in LPS-induced lung injury. The results displayed that EGCG reduced LPS-induced ALI as it modulates macrophage polarisation towards M2 status. Furthermore, EGCG also reduced the expression of proinflammatory M1 mediators iNOS TNF-α, IL-1ß and IL-6 in the LPS administered lung microenvironment. In addition, it increased the expression of KLF4, Arg1 and ym1, known to augment the M2 phenotype of macrophages. EGCG also alleviated the expression of 8-OHdG, nitrotyrosine, showing its ability to inhibit oxidative damage. TREM1 in the lung tissue and improved lung regenerative capacity by enhancing Ki67, PCNA and Ang-1 protein expression. Together, these results proposed the protective properties of EGCG against LPS-induced ALI in may be attributed to the suppression of M1/M2 macrophages subtype ratio, KLF4 augmentation, lung cell regeneration and regulating oxidative damage in the LPS-induced murine ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Catequina/análogos & derivados , Fatores de Transcrição Kruppel-Like/metabolismo , Macrófagos/metabolismo , Chá/química , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Anti-Inflamatórios/administração & dosagem , Arginase/metabolismo , Catequina/administração & dosagem , Catequina/farmacologia , Proliferação de Células/efeitos dos fármacos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Antígeno Ki-67/metabolismo , Fator 4 Semelhante a Kruppel , Lectinas/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Peroxidase/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo
8.
Lipids ; 55(2): 89-99, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31867745

RESUMO

Ricinoleic acid (RA) is the main fatty acid component of castor oil and was found to inhibit Ca2+ -signal transduction pathway-mediated cell cycle regulation in a yeast-based drug screening assay. RA is expected to have antidiabetic, antiallergy, and/or anticancer properties but its target molecule is unknown. To identify a novel pharmacological effect of RA, we investigated its target molecule in the Ca2+ -signal transduction pathway. RA inhibition of calcineurin (CN) was examined in a yeast-based CN inhibitor screening assay using the rsp5A401E mutant and in a phosphatase assay using recombinant human CN. RA showed growth-restoration activity at 5 µg/spot in the CN inhibitor screening assay with the rsp5A401E yeast strain. Furthermore, it directly inhibited CN without immunophilins at Ki = 33.7 µM in a substrate-competitive manner. The effects of RA on CN in mammalian cells were further evaluated by measuring ß-hexosaminidase (ß-HEX) release in RBL-2H3 cells. RA at 50 µM suppressed the release of ß-HEX from RBL-2H3 cells. Moreover, this compound was found to inhibit glycogen synthase kinase-3ß (GSK-3ß), as determined by a kinase assay using recombinant human GSK-3ß. RA inhibited GSK-3ß at Ki = 1.43 µM in a peptide substrate-competitive manner. The inhibition of GSK-3ß by this molecule was further assessed in mammalian cells by measuring the inhibition of glucose production in H4IIE rat hepatoma cells. RA at 25 µM suppressed glucose production in these cells. These findings indicate that RA and/or castor oil could be a useful functional fatty acid to treat allergy or type 2 diabetes.


Assuntos
Inibidores de Calcineurina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Óleo de Rícino/química , Ácidos Ricinoleicos/farmacologia , Animais , Calcineurina/metabolismo , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Fosforilação , Ratos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo
9.
Biomolecules ; 9(11)2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694198

RESUMO

Plants of the genus Wikstroemia have long been used as traditional medicines to treat diseases like pneumonia, rheumatism, and bronchitis. This study was designed to determine the effect of chamaejasmine, a biflavonoid present in W. dolichantha, on atopic dermatitis (AD)-like skin lesions in a 2,4-dinitrochlorobenzene (DNCB)-induced murine model of AD. Initially, we examined the anti-allergic activities of ten flavonoids from W. dolichantha by measuring ß-hexosaminidase release from RBL-2H3 cells. Subsequently, an SKH-1 hairless mouse model of AD was developed based on the topical application of DNCB. Chamaejasmine (0.5%) or pimecrolimus (1%, positive control) were applied to dorsal skins of DNCB-sensitized AD mice for two weeks. Serum IL-4 and IgE levels were determined using enzyme-linked immunosorbent assay kits and transepidermal water loss (TEWL) and skin hydration were measured using a Tewameter TM210 and a SKIN-O-MAT, respectively. Of the ten flavonoids isolated from W. dolichantha, chamaejasmine most potently inhibited DNP-specific IgE-induced degranulation in RBL-2H3 cells. Topical administration of chamaejasmine attenuated the clinical symptoms of DNCB-induced dermatitis (i.e., itching, dryness, erythema, and edema). Histological analyses demonstrated that dermal thickness and mast cell infiltration in dermis were significantly reduced by chamaejasmine. In addition, 0.5% chamaejasmine inhibited DNCB-induced increases in total IL-4 and IgE levels in serum, improved skin barrier function, and increased epidermis moisture. Our findings suggest chamaejasmine might be an effective therapeutic agent for the treatment of atopic diseases.


Assuntos
Antialérgicos/administração & dosagem , Biflavonoides/administração & dosagem , Dermatite Atópica/tratamento farmacológico , Dinitroclorobenzeno/efeitos adversos , Wikstroemia/química , Administração Tópica , Animais , Antialérgicos/farmacologia , Biflavonoides/farmacologia , Linhagem Celular , Dermatite Atópica/induzido quimicamente , Modelos Animais de Doenças , Imunoglobulina E/sangue , Interleucina-4/sangue , Camundongos , Camundongos Pelados , Extratos Vegetais/química , Tacrolimo/administração & dosagem , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia , beta-N-Acetil-Hexosaminidases/metabolismo
10.
J Ethnopharmacol ; 244: 112136, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31377261

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Paeonia lactiflora Pall. (peony) is a medicinal plant used in the Xiaoqinglong decoction, a commonly prescribed traditional Chinese medicine for asthma. The main active ingredients of peony roots-described as the total glucosides of peony (TGP)-have anti-inflammatory, immunomodulatory, and protective effects on endothelial cells, and they are known to improve rheumatoid arthritis. This study explored the underlying mechanism of TGP activity in the treatment of allergic asthma. MATERIALS AND METHODS: Allergic asthma was induced in BALB/c mice by administering injections of ovalbumin (OVA) mixed with aluminum hydroxide gel and inhaling nebulized OVA. The OVA-sensitized mice were treated with TGP by oral gavage, and the potentially anti-asthmatic treatment effect was studied by testing airway hyperresponsiveness, classifying and counting of leukocytes, performing cytokine assays, and analyzing the lung histopathology. The ß-hexosaminidase activity was assayed as a biomarker to evaluate the effect of TGP on mast cell degranulation. The mechanism of TGP was explored by monitoring the Ca2+ influx level in mast cells (RBL-2H3) using a Ca2+ fluorescent probe technique. RESULTS: In mice with OVA-induced allergic asthma, TGP reduced airway hyperresponsiveness and improved lung tissue pathology, which included a decrease in inflammatory cell infiltration and collagen deposition. TGP also significantly lowered BALF leukocyte, eosinophil, and neutrophil counts, along with chemokines and cytokines, such as eotaxin, TNF-α, IL-4, and MIP-1α, in serum and lungs of OVA-challenged mice. These effects were further confirmed with the decrease of ß-hexosaminidase release and the inhibition of Ca2+ influx in mast cell degranulation. CONCLUSIONS: Our findings suggest that TGP improved OVA-induced allergic asthma in mice mainly by suppressing Ca2+ influx-dependent mast cell degranulation.


Assuntos
Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Glucosídeos/uso terapêutico , Mastócitos/efeitos dos fármacos , Paeonia , Animais , Antiasmáticos/farmacologia , Asma/induzido quimicamente , Asma/imunologia , Asma/fisiopatologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Cálcio/metabolismo , Degranulação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citocinas/sangue , Citocinas/imunologia , Glucosídeos/farmacologia , Contagem de Leucócitos , Masculino , Mastócitos/fisiologia , Camundongos Endogâmicos BALB C , Ovalbumina , Ratos , beta-N-Acetil-Hexosaminidases/metabolismo
11.
J Food Biochem ; 43(1): e12674, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-31353487

RESUMO

Mung bean seed is a well-known plant protein consumed in Asian countries but the protein is usually retrieved as a waste product during starch production. This study investigated the anti-allergic property of mung bean protein hydrolysates (MBPH) produced by enzymatic hydrolysis using non-gastrointestinal (non-GI), GI and a combination of non-GI+GI enzymes. The hydrolysates were investigated for any anti-allergic property by detecting the amount of ß-hexosaminidase released in RBL-2H3 cells, and complemented with the MTT assay to show cell viability. It was found that MBPH hydrolyzed by a combination of flavourzyme (non-GI enzyme) and pancreatin (GI enzyme) exhibited the highest anti-allergic activity (135.61%), followed by those produced with alcalase, a non-GI enzyme (121.74%) and 80.32% for pancreatin (GI enzyme). Minimal toxicity (<30%) of all hydrolysates on RBL-2H3 cells line was observed. The results suggest that MBPH can potentially serve as a hypoallergenic food ingredient or supplement. PRACTICAL APPLICATIONS: Mung bean (Vigna radiata L. (Wilczek)) is also known as "green gram" and it is an excellent source of protein. The major mung bean storage proteins are the globulin, albumin and legumin, which are also referred to as legume allergens. Our study showed that mung bean peptides obtained after enzymatic hydrolysis influenced ß-hexosaminidase inhibition without any toxic effect on RBL-2H3 cells. This indicates that mung bean allergenicity can be reduced after enzymatic hydrolysis and the protein hydrolysates could be as a hypoallergic food, ingredient, supplement and/or protein substitute in the formulation of food products.


Assuntos
Antialérgicos/farmacologia , Endopeptidases/metabolismo , Trato Gastrointestinal/enzimologia , Pancreatina/metabolismo , Subtilisinas/metabolismo , Vigna/química , Sequência de Aminoácidos , Animais , Antialérgicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Peptídeos/química , Peptídeos/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteólise , Ratos , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , beta-N-Acetil-Hexosaminidases/metabolismo
12.
Int Immunopharmacol ; 71: 1-6, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30861392

RESUMO

The anti-allergic effect of berberine was evaluated in cellular and animal models of allergic responses. In this study, the results of the in vitro model of immunoglobulin (Ig) E-mediated mast cell degranulation showed that berberine significantly inhibited the release of ß-hexosaminidase (ß-HEX), histamine, IL-4 and TNF-α in rat basophilic leukemia cells (RBL-2H3 cells). Pretreatment with berberine prevented morphological changes in IgE-stimulated RBL-2H3 cells such as the recovery of an elongated shape. Pretreatment with berberine also suppressed the phosphorylation of antigen-induced Lyn, Syk, and Gab2, thus suppressing the downstream MAPK pathways. In the in vivo model of allergic responses, administration of berberine inhibited passive cutaneous anaphylaxis (PCA) in mice. The above results indicate berberine could suppress mast cell activation and allergic responses.


Assuntos
Antialérgicos/uso terapêutico , Berberina/uso terapêutico , Hipersensibilidade/tratamento farmacológico , Mastócitos/efeitos dos fármacos , Animais , Degranulação Celular , Linhagem Celular , Modelos Animais de Doenças , Histamina/metabolismo , Humanos , Imunoglobulina E/metabolismo , Interleucina-4/metabolismo , Masculino , Mastócitos/fisiologia , Camundongos , Anafilaxia Cutânea Passiva/efeitos dos fármacos , Ratos , Fator de Necrose Tumoral alfa/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo
13.
Int Immunopharmacol ; 67: 69-77, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30537633

RESUMO

Salvia miltiorrhiza root has been used in Asian traditional medicine for the treatment of cardiovascular diseases, asthma, and other conditions. Salvianolic acid B from S. miltiorrhiza extracts has been shown to improve airway hyperresponsiveness. We investigated the effects of salvianolic acid A, tanshinone I, and tanshinone IIA from S. miltiorrhiza in allergic asthma by using rat RBL-2H3 mast cells and female Balb/c mice. Antigen-induced degranulation was assessed by measuring ß-hexosaminidase activity in vitro. In addition, a murine ovalbumin-induced allergic asthma model was used to test the in vivo efficacy of salvianolic acid A and tanshinone IIA. Tanshinone I and tanshinone IIA inhibited antigen-induced degranulation of mast cells, but salvianolic acid A did not. Administration of salvianolic acid A and tanshinone IIA decreased the number of immune cells, particularly eosinophils in allergic asthma-induced mice. Histological studies showed that salvianolic acid A and tanshinone IIA reduced mucin production and inflammation in the lungs. Administration of salvianolic acid A and tanshinone IIA reduced the expression and secretion of Th2 cytokines (IL-4 and IL-13) in the bronchoalveolar lavage fluid and lung tissues of mice with ovalbumin-induced allergic asthma. These findings provide evidence that salvianolic acid A and tanshinone IIA may be potential anti-allergic therapeutics.


Assuntos
Abietanos/uso terapêutico , Antialérgicos/uso terapêutico , Ácidos Cafeicos/uso terapêutico , Hipersensibilidade/tratamento farmacológico , Lactatos/uso terapêutico , Mastócitos/fisiologia , Animais , Degranulação Celular , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mucinas/metabolismo , Ratos , Salvia miltiorrhiza/imunologia , Células Th2/imunologia , beta-N-Acetil-Hexosaminidases/metabolismo
14.
J Biol Chem ; 293(40): 15429-15438, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30135205

RESUMO

Berberine is a traditional medicine that has multiple medicinal and agricultural applications. However, little is known about whether berberine can be a bioactive molecule toward carbohydrate-active enzymes, which play numerous vital roles in the life process. In this study, berberine and its analogs were discovered to be competitive inhibitors of glycoside hydrolase family 20 ß-N-acetyl-d-hexosaminidase (GH20 Hex) and GH18 chitinase from both humans and the insect pest Ostrinia furnacalis Berberine and its analog SYSU-1 inhibit insect GH20 Hex from O. furnacalis (OfHex1), with Ki values of 12 and 8.5 µm, respectively. Co-crystallization of berberine and its analog SYSU-1 in complex with OfHex1 revealed that the positively charged conjugate plane of berberine forms π-π stacking interactions with Trp490, which are vital to its inhibitory activity. Moreover, the 1,3-dioxole group of berberine binds an unexplored pocket formed by Trp322, Trp483, and Val484, which also contributes to its inhibitory activity. Berberine was also found to be an inhibitor of human GH20 Hex (HsHexB), human GH18 chitinase (HsCht and acidic mammalian chitinase), and insect GH18 chitinase (OfChtI). Besides GH18 and GH20 enzymes, berberine was shown to weakly inhibit human GH84 O-GlcNAcase (HsOGA) and Saccharomyces cerevisiae GH63 α-glucosidase I (ScGluI). By analyzing the published crystal structures, berberine was revealed to bind with its targets in an identical mechanism, namely via π-π stacking and electrostatic interactions with the aromatic and acidic residues in the binding pockets. This paper reports new molecular targets of berberine and may provide a berberine-based scaffold for developing multitarget drugs.


Assuntos
Berberina/química , Quitinases/química , Inibidores de Glicosídeo Hidrolases/química , Quinazolinonas/química , beta-N-Acetil-Hexosaminidases/química , Animais , Berberina/metabolismo , Sítios de Ligação , Quitinases/antagonistas & inibidores , Quitinases/genética , Quitinases/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Medicina Tradicional Chinesa/métodos , Modelos Moleculares , Mariposas/química , Mariposas/enzimologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Quinazolinonas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Eletricidade Estática , Especificidade por Substrato , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo
15.
Methods Mol Biol ; 1803: 371-381, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29882150

RESUMO

Allergic diseases (atopy) include asthma, allergic rhinitis, conjunctivitis, and allergic sinusitis. It is estimated that up to 90% of asthmatics are atopic and have an allergy trigger for asthmatic episodes. In order to assess the risk of allergy induction associated with inhalation exposure, animal models of protein allergy have been developed. These models have been used both to identify proteins as allergens and to assess their relative potency. Often these research situations include allergens that are not well characterized or are unknown. In these situations, specific allergens are not available to be evaluated by more well-known assays (such as ELISAs), and developing a specific assay to evaluate an extract or mixture for an unknown or potential allergen is very time consuming and generally requires purified antigen/allergen. Additionally, when the comparison of the relative potency of multiple extracts is of interest, a common/generic platform is necessary. A more generic method, the rat basophil leukemia cell assay (RBL assay), has been developed which provides insight into the allergenicity of extracts and mixtures as well as providing a common platform for relative potency comparison between/among these complex allergen sources.


Assuntos
Antígenos/metabolismo , Basófilos/patologia , Imunoensaio/métodos , Imunoglobulina E/metabolismo , Leucemia/imunologia , Animais , Adesão Celular , Camundongos , Pólen/imunologia , Ratos , beta-N-Acetil-Hexosaminidases/metabolismo
16.
Chem Pharm Bull (Tokyo) ; 66(8): 818-821, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29848888

RESUMO

Zuotai is a drug containing mercury considered to be the king of Tibetan medicine. The biosafety of Zuotai led people's attention and so far little is known about the toxicity of Zuotai to mast cells. RBL-2H3 cells which used as an alternative model of mast cells were treated with Zuotai, ß-HgS and positive drug Compound 48/80 respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the toxicity of drugs to RBL-2H3 cells. The degranulation of RBL-2H3 cells was studied from ß-hexosaminidase, histamine, interleukin (IL)-4 and tumor necrosis factor-α (TNF-α). The result showed that Zuotai can affect the cytotoxicity and degranulation of RBL-2H3 cells and the results can provide reference for the toxicity evaluations of Tibetan medicine Zuotai.


Assuntos
Degranulação Celular/efeitos dos fármacos , Mediadores da Inflamação/toxicidade , Medicina Tradicional Tibetana , Compostos de Mercúrio/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Histamina/metabolismo , Ratos , Células Tumorais Cultivadas , beta-N-Acetil-Hexosaminidases/metabolismo
17.
Bioorg Med Chem Lett ; 28(12): 2210-2216, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29759725

RESUMO

Sanguisorba officinalis L. was well known as a traditional herbal medicine to treat inflammation and allergic skin diseases. The aim of this research was to indentify compounds with anti-allergic inflammatory property. Twenty-five compounds (1-25) were isolated from S. officinalis including two new compounds (1 and 8), and their chemical structures were identified by NMR and ESIMS analysis. Consequently, the anti-allergic inflammatory activities of these isolates were investigated by inhibiting ß-hexosaminidase and IL-4 production in PMA/A23187-stimulated RBL-2H3 cells. Compounds 6, 8, 13, 17-18 and 25 significantly inhibited ß-hexosaminidase release and IL-4 production. Additionally, compounds 8, 17 and 25 effectively suppressed the activation of NF-κB and NF-κB p65 translocation into the nucleus. Anti-inflammatory effects of isolated compounds were evaluated in LPS-stimulated RAW264.7 macrophages, and they showed dramatic inhibition on LPS-induced overproduction of nitric oxide (NO) and TNF-α. Consistently, the protein levels of iNOS and COX-2 were remarkably decreased by the single compounds 8, 13 and 25. These results showed that compounds 8, 13 and 25 from S. officinalis may have a therapeutic potential for allergic inflammatory diseases.


Assuntos
Antialérgicos/farmacologia , Inibidores Enzimáticos/farmacologia , Inflamação/tratamento farmacológico , Interleucina-4/antagonistas & inibidores , Sanguisorba/química , beta-N-Acetil-Hexosaminidases/metabolismo , Animais , Antialérgicos/química , Antialérgicos/isolamento & purificação , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inflamação/metabolismo , Interleucina-4/biossíntese , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Células RAW 264.7 , Ratos , Relação Estrutura-Atividade , Acetato de Tetradecanoilforbol/antagonistas & inibidores , Acetato de Tetradecanoilforbol/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/biossíntese
18.
J Ethnopharmacol ; 214: 160-167, 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29258854

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The fruits of Juniperus rigida have been used in Korean traditional medicine for the treatment of inflammatory diseases in humans such as rheumatoid arthritis. AIM OF THE STUDY: This study aimed to investigate the anti-atopic properties of J. rigida fruit in in vivo murine atopic dermatitis (AD) models. METHODS AND RESULTS: BALB/c mouse ears ad SKH-1 hairless mice stimulated with oxazolone (4 weeks) and DNCB (3 weeks), respectively, were treated with the 1% Juniperus rigida fruit EtOH extract (JFE). The JFE improved AD symptoms in both oxazolone- and DNCB-induced AD mice by accelerating skin barrier recovery function and suppressing the overproduction of serum immunoglobulin E (IgE) and interleukin 4 (IL-4). The JFE was found to contain isoscutellarein-7-O-ß-xylopyranoside, cupressuflavone, podocarpusflavone A, and hinokiflavone as major components based on phytochemical analysis. Eight flavonoids were isolated from JFE, and of those, cupressuflavone and isoscutellarein-7-O-ß-xylopyranoside strongly down-regulated IL-4 expression and ß-hexosaminidase release in RBL-2H3 cells. CONCLUSION: Therapeutic attempts with J. rigida fruit and its active components might be useful in treating AD and related skin inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Dermatite Atópica/prevenção & controle , Dinitroclorobenzeno , Juniperus , Oxazolona , Extratos Vegetais/farmacologia , Pele/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular Tumoral , Dermatite Atópica/sangue , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/imunologia , Modelos Animais de Doenças , Feminino , Frutas/química , Imunoglobulina E/sangue , Interleucina-4/sangue , Juniperus/química , Camundongos Pelados , Camundongos Endogâmicos BALB C , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Ratos , Pele/imunologia , Pele/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo
19.
Fitoterapia ; 121: 223-228, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28734737

RESUMO

Recently, the allergenicity of ginsenosides, as main active components in ginseng, has attracted much attention. Ginsenoside Rb1 and Rd. have been reported to induce anaphylactoid reaction. In this study, the allergenicity of a series of 20(S)-protopanaxadiol (PPD) type ginsenosides, including Rb1, Rd., F2, Compound K and 20(S)-PPD, was evaluated in rat basophilic leukemia 2H3 (RBL2H3) cells. As a result, 20(S)-PPD had no effect on the mast cell degranulation, but other components showed anaphylactoid potential to different extent. The allergenicity was stronger and stronger according to the order "Rb1, Rd., F2, Compound K". Then, F2 was further verified in RBL-2H3 cells, mouse peritoneal mast cells (MPMCs), Laboratory of Allergic Disease 2 (LAD2) human mast cells in vitro and mice in vivo. Results showed that F2 could induce a significant increase of histamine release and translocation of phosphatidylserine in RBL-2H3 cells. F2 also increased ß-hexosaminidase release and the intracellular Ca2+ concentration of MPMCs and LAD2 cells. In addition, histamine level in serum of mice was elevated dose-dependently. Our study revealed the potential structure-allergenicity relationship of 20(S)-PPD type ginsenosides and first verified the allergenicity of ginsenoside F2. This study could guide the establishment of quality standards for safe application of ginsenoside-containing preparations.


Assuntos
Ginsenosídeos/efeitos adversos , Hipersensibilidade/fisiopatologia , Mastócitos/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Histamina/metabolismo , Humanos , Hipersensibilidade/metabolismo , Masculino , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Estrutura Molecular , Fosfatidilserinas/metabolismo , Ratos , beta-N-Acetil-Hexosaminidases/metabolismo
20.
J Transl Med ; 15(1): 148, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28659175

RESUMO

BACKGROUND: Anaphylactoid reactions induced by preparations containing red ginseng have been reported. The aim of this study is to evaluate the allergenicity and screen potential allergens in red ginseng extract thoroughly. METHODS: Red ginseng extract (RGE) and different fractions of RGE were prepared and evaluated by measuring the degranulation and viability of rat basophilic leukemia 2H3 (RBL-2H3) cells. Potential allergens were screened by RBL-2H3 cell extraction and allergenicity verified in RBL-2H3 cells, mouse peritoneal mast cells, Laboratory of Allergic Disease 2 (LAD2) human mast cells and mice, respectively. RESULTS: 80% ethanol extract of red ginseng extract induced mast cell degranulation with less cytotoxicity, but 40% ethanol extract could not. Ginsenoside Rd and 20(S)-Rg3 could induce a significant increase in ß-hexosaminidase release, histamine release and translocation of phosphatidylserine in RBL-2H3 cells. Ginsenoside Rd and 20(S)-Rg3 also increased ß-hexosaminidase release and the intracellular Ca2+ concentration in mouse peritoneal mast cells and LAD2 cells. In addition, histamine levels in serum of mice were elevated dose-dependently. CONCLUSIONS: Ginsenoside Rd and 20(S)-Rg3 are potential allergens that induce the release of mediators associated with anaphylactoid reactions. Our study could guide optimization of methods associated with Rd/20(S)-Rg3-containing preparations and establishment of quality standards for safe application of Traditional Chinese Medicines.


Assuntos
Alérgenos/imunologia , Anafilaxia/imunologia , Panax/química , Extratos Vegetais/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Ginsenosídeos/farmacologia , Liberação de Histamina , Humanos , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Camundongos Endogâmicos ICR , Fosfatidilserinas/metabolismo , Extratos Vegetais/imunologia , Ratos , Espectrometria de Massas em Tandem , beta-N-Acetil-Hexosaminidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA