Your browser doesn't support javascript.
loading
Pyruvate decarboxylase provides growing pollen tubes with a competitive advantage in petunia.
Gass, Nathalie; Glagotskaia, Tatiana; Mellema, Stefan; Stuurman, Jeroen; Barone, Mario; Mandel, Therese; Roessner-Tunali, Ute; Kuhlemeier, Cris.
Affiliation
  • Gass N; Institute of Plant Sciences, University of Berne, CH-3013 Berne, Switzerland.
Plant Cell ; 17(8): 2355-68, 2005 Aug.
Article in En | MEDLINE | ID: mdl-15994907
ABSTRACT
Rapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities. The ethanolic fermentation pathway consists of two committed enzymes pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). Because adh mutations do not affect male gametophyte function, the obvious question is why pollen synthesize an abundant enzyme if they could do just as well without. Using transposon tagging in Petunia hybrida, we isolated a null mutant in pollen-specific Pdc2. Growth of the mutant pollen tubes through the style is reduced, and the mutant allele shows reduced transmission through the male, when in competition with wild-type pollen. We propose that not ADH but rather PDC is the critical enzyme in a novel, pollen-specific pathway. This pathway serves to bypass pyruvate dehydrogenase enzymes and thereby maintain biosynthetic capacity and energy production under the unique conditions prevailing during pollen-pistil interaction.
Subject(s)

Full text: 1 Database: MEDLINE Main subject: Pollen / Pyruvate Dehydrogenase (Lipoamide) / Petunia Language: En Journal: Plant Cell Year: 2005 Type: Article Affiliation country: Switzerland

Full text: 1 Database: MEDLINE Main subject: Pollen / Pyruvate Dehydrogenase (Lipoamide) / Petunia Language: En Journal: Plant Cell Year: 2005 Type: Article Affiliation country: Switzerland