Polymerase delta interacting protein 2 sustains vascular structure and function.
Arterioscler Thromb Vasc Biol
; 33(9): 2154-61, 2013 Sep.
Article
in En
| MEDLINE
| ID: mdl-23825363
OBJECTIVE: On the basis of previous evidence that polymerase delta interacting protein 2 (Poldip2) increases reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (Nox4) activity in vascular smooth muscle cells, we hypothesized that in vivo knockdown of Poldip2 would inhibit reactive oxygen species production and alter vascular function. APPROACH AND RESULTS: Because homozygous Poldip2 deletion is lethal, Poldip2(+/-) mice were used. Poldip2 mRNA and protein levels were reduced by ≈50% in Poldip2(+/-) aorta, with no change in p22phox, Nox1, Nox2, and Nox4 mRNAs. NADPH oxidase activity was also inhibited in Poldip2(+/-) tissue. Isolated aortas from Poldip2(+/-) mice demonstrated impaired phenylephrine and potassium chloride-induced contractions, increased stiffness, and reduced compliance associated with disruption of elastic lamellae and excessive extracellular matrix deposition. Collagen I secretion was elevated in cultured vascular smooth muscle cells from Poldip2(+/-) mice and restored by H2O2 supplementation, suggesting that this novel function of Poldip2 is mediated by reactive oxygen species. Furthermore, Poldip2(+/-) mice were protected against aortic dilatation in a model of experimental aneurysm, an effect consistent with increased collagen secretion. CONCLUSIONS: Poldip2 knockdown reduces H2O2 production in vivo, leading to increases in extracellular matrix, greater vascular stiffness, and impaired agonist-mediated contraction. Thus, unaltered expression of Poldip2 is necessary for vascular integrity and function.
Key words
Full text:
1
Database:
MEDLINE
Main subject:
Aorta
/
Aortic Aneurysm
/
Nuclear Proteins
/
Mitochondrial Proteins
Language:
En
Journal:
Arterioscler Thromb Vasc Biol
Year:
2013
Type:
Article
Affiliation country:
United States