Your browser doesn't support javascript.
loading
Dietary betaine improves egg-laying rate in hens through hypomethylation and glucocorticoid receptor-mediated activation of hepatic lipogenesis-related genes.
Omer, Nagmeldin A; Hu, Yun; Idriss, Abdulrahman A; Abobaker, Halima; Hou, Zhen; Yang, Shu; Ma, Wenqiang; Zhao, Ruqian.
Affiliation
  • Omer NA; MOE Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medic
  • Hu Y; MOE Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medic
  • Idriss AA; MOE Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medic
  • Abobaker H; MOE Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medic
  • Hou Z; MOE Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medic
  • Yang S; MOE Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medic
  • Ma W; MOE Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medic
  • Zhao R; MOE Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China; Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medic
Poult Sci ; 99(6): 3121-3132, 2020 Jun.
Article in En | MEDLINE | ID: mdl-32475449
ABSTRACT
In avian species, liver lipid metabolism plays an important role in egg laying performance. Previous studies indicate that betaine supplementation in laying hens improves egg production. However, it remains unclear if betaine improves laying performance by affecting hepatic lipid metabolism and what mechanisms are involved. We fed laying hens a 0.5% betaine-supplemented diet for 4 wks to investigate its effect on hepatic lipids metabolism in vivo and confirmed its mechanism via in vitro experiments using embryonic chicken hepatocytes. Results showed that betaine supplemented diet enhanced laying production by 4.3% compared with normal diet, accompanied with increased liver and plasma triacylglycerol concentrations (P < 0.05) in hens. Simultaneously, key genes involved in hepatic lipid synthesis, such as sterol regulatory element binding protein 1 (SREBP-1), fatty acid synthase, acetyl-CoA carboxylase, and stearoyl-CoA desaturase 1 (SCD1) were markedly upregulated at the mRNA level (P < 0.05). Western blot results showed that SREBP-1 and SCD1 protein levels were also increased (P < 0.05). Moreover, mRNA expression of main apolipoprotein components of yolk-targeted lipoproteins, apolipoprotein B (ApoB) and apolipoprotein-V1 (ApoV1), in addition to microsomal triglyceride transfer proteins, which is closely related to the synthesis and release of very-low density lipoprotein, were also markedly elevated (P < 0.05). Methylated DNA immunoprecipitation combined with PCR detects reduction of methylation levels in certain regions of the above gene promoters. Chromatin immunoprecipitation PCR assays showed increased binding of glucocorticoid receptor (GR) to SREBP1 and ApoB gene promoters. Similar results of ApoV1 gene expression were obtained from cultured hepatocytes treated with betaine. Additionally, betaine increased the expression of GR and some genes involved in methionine cycle in vitro. These results suggest that betaine supplementation could alter the expression of liver lipid synthesis and transport-related genes by modifying the methylation status and GR binding on their promoter and hence promote the synthesis and release of yolk precursor substances in the liver.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Reproduction / Triglycerides / Betaine / Receptors, Glucocorticoid / Gene Expression / Chickens / DNA Methylation / Lipogenesis Language: En Journal: Poult Sci Year: 2020 Type: Article

Full text: 1 Database: MEDLINE Main subject: Reproduction / Triglycerides / Betaine / Receptors, Glucocorticoid / Gene Expression / Chickens / DNA Methylation / Lipogenesis Language: En Journal: Poult Sci Year: 2020 Type: Article