Your browser doesn't support javascript.
loading
Comprehensive study on the effect of dietary leucine supplementation on intestinal physiology, TOR signaling and microbiota in juvenile turbot (Scophthalmus maximus L.).
Sui, Zhongmin; Wang, Ning; Zhang, Xiaojing; Liu, Chengdong; Wang, Xuan; Zhou, Huihui; Mai, Kangsen; He, Gen.
Affiliation
  • Sui Z; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China.
  • Wang N; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China.
  • Zhang X; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China.
  • Liu C; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China. Electronic address: liuchengdong@ouc.edu.cn.
  • Wang X; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China.
  • Zhou H; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China.
  • Mai K; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China.
  • He G; Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China; Key Laboratory of Aquaculture Nutriti
Fish Shellfish Immunol ; 141: 109060, 2023 Oct.
Article in En | MEDLINE | ID: mdl-37678482
ABSTRACT
Intestinal damage and inflammation are major health and welfare issues in aquaculture. Considerable efforts have been devoted to enhancing intestinal health, with a specific emphasis on dietary additives. Branch chain amino acids, particularly leucine, have been reported to enhance growth performance in various studies. However, few studies have focused on the effect of leucine on the intestinal function and its underlying molecular mechanism is far from fully illuminated. In the present study, we comprehensively evaluated the effect of dietary leucine supplementation on intestinal physiology, signaling transduction and microbiota in fish. Juvenile turbot (Scophthalmus maximus L.) (10.13 ± 0.01g) were fed with control diet (Con diet) and leucine supplementation diet (Leu diet) for 10 weeks. The findings revealed significant improvements in intestinal morphology and function in the turbot fed with Leu diet. Leucine supplementation also resulted in a significant increase in mRNA expression levels of mucosal barrier genes, indicating enhanced intestinal integrity. The transcriptional levels of pro-inflammatory factors il-1ß, tnf-α and irf-1 was decreased in response to leucine supplementation. Conversely, the level of anti-inflammatory factors tgf-ß, il-10 and nf-κb were up-regulated by leucine supplementation. Dietary leucine supplementation led to an increase in intestinal complement (C3 and C4) and immunoglobulin M (IgM) levels, along with elevated antioxidant activity. Moreover, dietary leucine supplementation significantly enhanced the postprandial phosphorylation level of the target of rapamycin (TOR) signaling pathway in the intestine. Finally, intestinal bacterial richness and diversity were modified and intestinal bacterial composition was re-shaped by leucine supplementation. Overall, these results provide new insights into the beneficial role of leucine supplementation in promoting intestinal health in turbot, offering potential implications for the use of leucine as a nutritional supplement in aquaculture practices.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Flatfishes / Microbiota Language: En Journal: Fish Shellfish Immunol Year: 2023 Type: Article Affiliation country: China

Full text: 1 Database: MEDLINE Main subject: Flatfishes / Microbiota Language: En Journal: Fish Shellfish Immunol Year: 2023 Type: Article Affiliation country: China