Your browser doesn't support javascript.
loading
Targeting mitochondrial quality control for diabetic cardiomyopathy: Therapeutic potential of hypoglycemic drugs.
Zhou, Yutong; Suo, Wendong; Zhang, Xinai; Liang, Jiaojiao; Zhao, Weizhe; Wang, Yue; Li, Hong; Ni, Qing.
Affiliation
  • Zhou Y; Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China.
  • Suo W; LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
  • Zhang X; Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China.
  • Liang J; Zhengzhou Shuqing Medical College, Zhengzhou 450064, China.
  • Zhao W; College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 100105, China.
  • Wang Y; Capital Medical University, Beijing 100069, China.
  • Li H; LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China. Electronic address: tgzyyx6161@163.com.
  • Ni Q; Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China. Electronic address: gaozhong6661@126.com.
Biomed Pharmacother ; 168: 115669, 2023 Dec.
Article in En | MEDLINE | ID: mdl-37820568
ABSTRACT
Diabetic cardiomyopathy is a chronic cardiovascular complication caused by diabetes that is characterized by changes in myocardial structure and function, ultimately leading to heart failure and even death. Mitochondria serve as the provider of energy to cardiomyocytes, and mitochondrial dysfunction plays a central role in the development of diabetic cardiomyopathy. In response to a series of pathological changes caused by mitochondrial dysfunction, the mitochondrial quality control system is activated. The mitochondrial quality control system (including mitochondrial biogenesis, fusion and fission, and mitophagy) is core to maintaining the normal structure of mitochondria and performing their normal physiological functions. However, mitochondrial quality control is abnormal in diabetic cardiomyopathy, resulting in insufficient mitochondrial fusion and excessive fission within the cardiomyocyte, and fragmented mitochondria are not phagocytosed in a timely manner, accumulating within the cardiomyocyte resulting in cardiomyocyte injury. Currently, there is no specific therapy or prevention for diabetic cardiomyopathy, and glycemic control remains the mainstay. In this review, we first elucidate the pathogenesis of diabetic cardiomyopathy and explore the link between pathological mitochondrial quality control and the development of diabetic cardiomyopathy. Then, we summarize how clinically used hypoglycemic agents (including sodium-glucose cotransport protein 2 inhibitions, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, thiazolidinediones, metformin, and α-glucosidase inhibitors) exert cardioprotective effects to treat and prevent diabetic cardiomyopathy by targeting the mitochondrial quality control system. In addition, the mechanisms of complementary alternative therapies, such as active ingredients of traditional Chinese medicine, exercise, and lifestyle, targeting mitochondrial quality control for the treatment of diabetic cardiomyopathy are also added, which lays the foundation for the excavation of new diabetic cardioprotective drugs.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Traditional Medicines: Medicinas_tradicionales_de_asia / Medicina_china Main subject: Diabetes Mellitus / Diabetic Cardiomyopathies Language: En Journal: Biomed Pharmacother Year: 2023 Type: Article Affiliation country: China

Full text: 1 Database: MEDLINE Traditional Medicines: Medicinas_tradicionales_de_asia / Medicina_china Main subject: Diabetes Mellitus / Diabetic Cardiomyopathies Language: En Journal: Biomed Pharmacother Year: 2023 Type: Article Affiliation country: China