Your browser doesn't support javascript.
loading
Highly water-resistant paper via infiltration with polymeric microspheres from nanocellulose-stabilized plant oil-derived monomer.
Gao, Wei; Wu, Tong; Cheng, Yaming; Wang, Jie; Yuan, Liang; Wang, Zhongkai; Wang, Baoxia.
Affiliation
  • Gao W; Anhui Provincial Engineering Center for High Performance Biabasd Nylon, College of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China; Biomass Molecular Engineering Center, College of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China.
  • Wu T; Anhui Provincial Engineering Center for High Performance Biabasd Nylon, College of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China; Biomass Molecular Engineering Center, College of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China.
  • Cheng Y; Anhui Provincial Engineering Center for High Performance Biabasd Nylon, College of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China; Biomass Molecular Engineering Center, College of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China.
  • Wang J; Anhui Provincial Engineering Center for High Performance Biabasd Nylon, College of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China; Biomass Molecular Engineering Center, College of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China.
  • Yuan L; Anhui Provincial Engineering Center for High Performance Biabasd Nylon, College of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China; Biomass Molecular Engineering Center, College of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China.
  • Wang Z; Anhui Provincial Engineering Center for High Performance Biabasd Nylon, College of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China; Biomass Molecular Engineering Center, College of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China.
  • Wang B; Anhui Provincial Engineering Center for High Performance Biabasd Nylon, College of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China; Biomass Molecular Engineering Center, College of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China.
Int J Biol Macromol ; 267(Pt 1): 131539, 2024 May.
Article in En | MEDLINE | ID: mdl-38608994
ABSTRACT
Sustainable strategies to improve the water resistance of cellulose paper are actively sought. In this work, polymeric microspheres (PMs), prepared through emulsion polymerization of cellulose nanofibers stabilized rubber seed oil-derived monomer, were investigated as coatings on corrugated medium paper (CMP). After infiltrating porous paper with PMs, the water-resistant corrugated papers (WRCPn) with enhanced mechanical properties were obtained. When 30 wt% PMs were introduced, WRCP30 turned out to be highly compacted with an increased water contact angle of 106.3° and a low water vapor transmission rate of 81 g/(m2 d) at 23 °C. Meanwhile, the tensile strength of WRCP30 increased to 22.2 MPa, a 4-fold increase from CMP. When tested in a well-hydrated state, 71% of its mechanical strength in the dry state was maintained. Even with a low content of 10 wt% PMs, WRCP10 also exhibited stable tensile strength and water wettability during the cyclic soaking-drying process. Thus, the plant oil based sustainable emulsion polymers provide a convenient route for enhancing the overall performance of cellulose paper.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Tensile Strength / Plant Oils / Water / Cellulose / Microspheres Language: En Journal: Int J Biol Macromol Year: 2024 Type: Article Affiliation country: China

Full text: 1 Database: MEDLINE Main subject: Tensile Strength / Plant Oils / Water / Cellulose / Microspheres Language: En Journal: Int J Biol Macromol Year: 2024 Type: Article Affiliation country: China