Your browser doesn't support javascript.
loading
Investigation of intracellular signalling cascades mediating stimulatory effect of a Gymnema sylvestre extract on insulin secretion from isolated mouse and human islets of Langerhans.
Al-Romaiyan, A; Liu, B; Docherty, R; Huang, G-C; Amiel, S; Persaud, S J; Jones, P M.
Afiliación
  • Al-Romaiyan A; Diabetes Research Group, Division of Diabetes and Nutritional Sciences, King's College London, London, UK.
Diabetes Obes Metab ; 14(12): 1104-13, 2012 Dec.
Article en En | MEDLINE | ID: mdl-22775778
ABSTRACT

AIM:

Traditional plant-based remedies such as Gymnema sylvestre (GS) extracts have been used to treat diabetes mellitus for many centuries. We have shown previously that a novel GS extract, OSA®, has a direct effect on insulin secretion but its mode of action has not been studied in detail Thus this study investigated the possible underlying mechanism(s) by which OSA® exerts its action.

METHODS:

The effects of OSA® on [Ca(2+)]i and K(+) conductances were assessed by Ca(2+) microfluorimetry and electrophysiology in dispersed mouse islets and MIN6 ß-cells, respectively. Isolated mouse (from 20 to 25 mice) and human (from 3 donors) islets, and MIN6 ß-cells, were used to investigate whether the stimulatory effect of OSA® on insulin secretion was dependent on the presence of extracellular calcium and protein kinase activation.

RESULTS:

OSA ®-induced insulin secretion from mouse islets and MIN6 ß-cells was inhibited by nifedipine, a voltage-gated Ca(2+) channel blocker, and by the removal of extracellular Ca(2+), respectively. OSA® did not affect the activities of KATP channels or voltage-dependent K(+) channels in MIN6 ß-cells but it caused an increase in intracellular Ca(2+) ([Ca(2+)]i) concentrations in Fura-2-loaded mouse islet cells. The insulin secretagogue effect of OSA® was dependent, in part, on protein kinase activation since incubating mouse or human islets with staurosporine, a general protein kinase inhibitor, resulted in partial inhibition of OSA®-induced insulin secretion. Experiments using permeabilized, Ca(2+)-clamped MIN6 ß-cells revealed a Ca(2+)-independent component action of OSA® at a late stage in the stimulus-response coupling pathway. OSA®-induced insulin secretion was unexpectedly associated with a decrease in intracellular cAMP levels.

CONCLUSIONS:

These data indicate that the GS isolate OSA® stimulates insulin secretion from mouse and human islets in vitro, at least in part as a consequence of Ca(2+) influx and protein kinase activation.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Métodos Terapéuticos y Terapias MTCI: Terapias_biologicas Asunto principal: Proteínas Quinasas / Extractos Vegetales / Islotes Pancreáticos / Preparaciones de Plantas / Gymnema sylvestre / Proteínas Sensoras del Calcio Intracelular / Insulina Idioma: En Revista: Diabetes Obes Metab Año: 2012 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Bases de datos: MEDLINE Métodos Terapéuticos y Terapias MTCI: Terapias_biologicas Asunto principal: Proteínas Quinasas / Extractos Vegetales / Islotes Pancreáticos / Preparaciones de Plantas / Gymnema sylvestre / Proteínas Sensoras del Calcio Intracelular / Insulina Idioma: En Revista: Diabetes Obes Metab Año: 2012 Tipo del documento: Article País de afiliación: Reino Unido