Chrysin, Abundant in Morinda citrifolia Fruit Water-EtOAc Extracts, Combined with Apigenin Synergistically Induced Apoptosis and Inhibited Migration in Human Breast and Liver Cancer Cells.
J Agric Food Chem
; 64(21): 4235-45, 2016 Jun 01.
Article
en En
| MEDLINE
| ID: mdl-27137679
The composition of Morinda citrifolia (M. citrifolia) was determined using high-performance liquid chromatography (HPLC), and the anticancer effects of M. citrifolia extract evaluated in HepG2, Huh7, and MDA-MB-231 cancer cells. M. citrifolia fruit extracts were obtained by using five different organic solvents, including hexane (Hex), methanol (MeOH), ethyl acetate (EtOAc), chloroform (CHCl3), and ethanol (EtOH). The water-EtOAc extracts from M. citrifolia fruits was found to have the highest anticancer activity. HPLC data revealed the predominance of chrysin in water-EtOAc extracts of M. citrifolia fruit. Furthermore, the combined effects of cotreatment with apigenin and chrysin on liver and breast cancer were investigated. Treatment with apigenin plus chrysin for 72-96 h reduced HepG2 and MDA-MB-231 cell viability and induced apoptosis through down-regulation of S-phase kinase-associated protein-2 (Skp2) and low-density lipoprotein receptor-related protein 6 (LRP6) expression. However, the combination treatment for 36 h synergistically decreased MDA-MB-231 cell motility but not cell viability through down-regulation of MMP2, MMP9, fibronectin, and snail in MDA-MB-231 cells. Additionally, chrysin combined with apigenin also suppressed tumor growth in human MDA-MB-231 breast cancer cells xenograft through down-regulation of ki-67 and Skp2 protein. The experimental results showed that chrysin combined with apigenin can reduce HepG2 and MDA-MB-231 proliferation and cell motility and induce apoptosis. It also offers opportunities for exploring new drug targets, and further investigations are underway in this regard.
Palabras clave
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Flavonoides
/
Neoplasias de la Mama
/
Extractos Vegetales
/
Apoptosis
/
Morinda
/
Apigenina
/
Neoplasias Hepáticas
Idioma:
En
Revista:
J Agric Food Chem
Año:
2016
Tipo del documento:
Article