Endoperoxide-8-aminoquinoline hybrids as dual-stage antimalarial agents with enhanced metabolic stability.
Eur J Med Chem
; 149: 69-78, 2018 Apr 10.
Article
en En
| MEDLINE
| ID: mdl-29499488
Hybrid compounds may play a critical role in the context of the malaria eradication agenda, which will benefit from therapeutic tools active against the symptomatic erythrocytic stage of Plasmodium infection, and also capable of eliminating liver stage parasites. To address the need for efficient multistage antiplasmodial compounds, a small library of 1,2,4,5-tetraoxane-8- aminoquinoline hybrids, with the metabolically labile C-5 position of the 8-aminoquinoline moiety blocked with aryl groups, was synthesized and screened for antiplasmodial activity and metabolic stability. The hybrid compounds inhibited development of intra-erythrocytic forms of the multidrug-resistant Plasmodium falciparum W2 strain, with EC50 values in the nM range, and with low cytotoxicity against mammalian cells. The compounds also inhibited the development of P. berghei liver stage parasites, with the most potent compounds displaying EC50 values in the low µM range. SAR analysis revealed that unbranched linkers between the endoperoxide and 8-aminoquinoline pharmacophores are most beneficial for dual antiplasmodial activity. Importantly, hybrids were significantly more potent than a 1:1 mixture of 8-aminoquinoline-tetraoxane, highlighting the superiority of the hybrid approach over the combination therapy. Furthermore, aryl substituents at C-5 of the 8-aminoquinoline moiety improve the compounds' metabolic stability when compared with their primaquine (i.e. C-5 unsubstituted) counterparts. Overall, this study reveals that blocking the quinoline C-5 position does not result in loss of dual-stage antimalarial activity, and that tetraoxane-8- aminoquinoline hybrids are an attractive approach to achieve elimination of exo- and intraerythrocytic parasites, thus with the potential to be used in malaria eradication campaigns.
Palabras clave
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Aminoquinolinas
/
Antimaláricos
Idioma:
En
Revista:
Eur J Med Chem
Año:
2018
Tipo del documento:
Article
País de afiliación:
Portugal