Detection of broadleaf weeds growing in turfgrass with convolutional neural networks.
Pest Manag Sci
; 75(8): 2211-2218, 2019 Aug.
Article
en En
| MEDLINE
| ID: mdl-30672096
BACKGROUND: Weed infestations reduce turfgrass aesthetics and uniformity. Postemergence (POST) herbicides are applied uniformly on turfgrass, hence areas without weeds are also sprayed. Deep learning, particularly the architecture of convolutional neural network (CNN), is a state-of-art approach to recognition of images and objects. In this paper, we report deep learning CNN (DL-CNN) models that are remarkably accurate at detection of broadleaf weeds in turfgrasses. RESULTS: VGGNet was the best model for detection of various broadleaf weeds growing in dormant bermudagrass [Cynodon dactylon (L.)] and DetectNet was the best model for detection of cutleaf evening-primrose (Oenothera laciniata Hill) in bahiagrass (Paspalum notatum Flugge) when the learning rate policy was exponential decay. These models achieved high F1 scores (>0.99) and overall accuracy (>0.99), with recall values of 1.00 in the testing datasets. CONCLUSION: The results of the present research demonstrate the potential for detection of broadleaf weed using DL-CNN models for detection of broadleaf weeds in turfgrass systems. Further research is required to evaluate weed control in field conditions using these models for in situ video input in conjunction with a smart sprayer. © 2019 Society of Chemical Industry.
Palabras clave
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Redes Neurales de la Computación
/
Malezas
/
Control de Malezas
/
Aprendizaje Profundo
Tipo de estudio:
Diagnostic_studies
/
Prognostic_studies
Idioma:
En
Revista:
Pest Manag Sci
Año:
2019
Tipo del documento:
Article
País de afiliación:
Estados Unidos