Your browser doesn't support javascript.
loading
Supplementation with calcium salts of cottonseed oil improves performance of Bos indicus animals consuming finishing diets.
Carvalho, Marcos A A; Cappellozza, Bruno I; Silva, Bruna; Castro, Thais S; Burim, Marcos Renato; Cervieri, Rafael C.
Afiliación
  • Carvalho MAA; Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, GO, Brazil.
  • Cappellozza BI; Nutricorp, Araras, SP, Brazil.
  • Silva B; Fazenda Flórida, Guaiçara, SP, Brazil.
  • Castro TS; Nutricorp, Araras, SP, Brazil.
  • Burim MR; Nutricorp, Araras, SP, Brazil.
  • Cervieri RC; Nutribeef Consultoria, Botucatu, SP, Brazil.
Transl Anim Sci ; 4(2): txaa080, 2020 Apr.
Article en En | MEDLINE | ID: mdl-32705072
ABSTRACT
Lipid ingredients are often used into feedlot cattle diets, primarily to increase energy density and improve efficiency parameters of the herd. Therefore, this study was designed to evaluate the effects of including calcium salts of fatty acids (CSFA) and increasing levels of cottonseed byproducts into feedlot diets. On day 0 of the study, 96 Bos indicus bullocks were individually weighed twice and initial body weight (BW) was considered the average of both measurements (initial BW = 287 ± 22.4 kg). Bulls were ranked by initial BW, allocated into 1 of 12 feedlot pens (eight bulls per pen), and pens randomly assigned to one of three treatments 1) inclusion of 15.0% [dry matter (DM) basis] of cottonseed byproducts into the finishing diet (CTS-15; n = 4), 2) inclusion of 22.0% (DM basis) of cottonseed byproducts into the finishing diet (CTS-22; n = 4), and 3) inclusion of 2.7% (DM basis) of CSFA of cottonseed oil into the finishing diet (CSFA; n = 4). The experimental period lasted 135 d and consisted of 5 d of preadaptation, 15 d of adaptation (ADP), 31 d of growing (GRO), and 84 d of finishing (FIN). Performance and carcass characteristics data were evaluated at the end of the experimental period. A treatment × period interaction was observed on total DM intake (DMI; P < 0.0001), given that no treatment differences were observed during ADP (P > 0.33), whereas CSFA-supplemented animals had a reduced DMI during GRO and FIN phases (P < 0.05). When individual mean nutrient intake was evaluated, CSFA supplementation caused a reduction in crude protein and physically effective neutral detergent fiber intake (P ≤ 0.05), and tended to reduce metabolizable energy, net energy for maintenance and gain intake (P = 0.06). Additionally, CSFA inclusion or CTS increase into the diet did not affect final BW, BW change, average daily gain (ADG), hot carcass weight, carcass ADG, and yield gain (P ≥ 0.11). On the other hand, CSFA reduced DMI as percentage of BW and improved feed efficiency (FE; P < 0.02) and also tended to improve biological conversion (BC; P = 0.07) versus CTS. Similarly, increasing CTS byproducts in the diet improved FE and BC (P = 0.02) but also tended to increase dressing percentage (DP; P = 0.08). In summary, including CSFA into feedlot diets reduced DMI but improved FE and BC of beef cattle, demonstrating the efficacy of this technology on feedlot beef cattle diets. Moreover, increasing cottonseed byproducts into the diets also benefited FE, BC, and DP of finishinw B. indicus cattle.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Transl Anim Sci Año: 2020 Tipo del documento: Article País de afiliación: Brasil

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Transl Anim Sci Año: 2020 Tipo del documento: Article País de afiliación: Brasil