Inhibitory activities of curzerenone, curdione, furanodienone, curcumol and germacrone on Ca2+-activated chloride channels.
Fitoterapia
; 147: 104736, 2020 Nov.
Article
en En
| MEDLINE
| ID: mdl-33010370
Calcium-activated chloride channels (CaCCs) as a kind of widely expressed ion channels play crucial roles in a variety of physiological regulation. TMEM16A has been identified as the molecular basis of CaCCs in numerous cell types and is considered a new drug target for many diseases. Regulating the function of TMEM16A through small molecule modulators has become a new strategy to improve respiratory and digestive dysfunction and even tumor therapy. Herein, we obtained 5 sesquiterpenoids, named curzerenone, curdione, furanodienone, curcumol and germacrone with TMEM16A inhibition and revealed their mechanism of action by fluorescent and electrophysiological assays. Cell-based YFP fluorescence data demonstrated that 5 compounds inhibited TMEM16A-mediated I- influx in a dose-dependent manner. To explore the mechanism of 5 compounds on CaCCs, FRT cells with high expression of TMEM16A, HBE, HT-29 and T84 cells and mouse colons were used in short-circuit current assay. Our results showed that 5 compounds inhibited the Ca2+-activated Cl- currents generated by the Eact, ATP and UTP stimulation, and this inhibitory effect was related not only to the direct inhibition of channel opening, but also the inhibition of intracellular Ca2+ concentration and K+ channel activity. In addition to CaCCs, these 5 compounds also had definite inhibitory activities against cystic fibrosis transmembrane regulator (CFTR) at the cellular level. In summary, these compounds have the potential to regulate the activites of TMEM16A/CaCCs and CFTR channels in vitro, providing a new class of lead compounds for the development of drugs for diseases related to chloride channel dysfunction.
Palabras clave
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Sesquiterpenos
/
Canales de Cloruro
/
Agonistas de los Canales de Cloruro
Idioma:
En
Revista:
Fitoterapia
Año:
2020
Tipo del documento:
Article