Your browser doesn't support javascript.
loading
5,6,7,4'-Tetramethoxyflavanone alleviates neurodegeneration in a dexamethasone-induced neurodegenerative mouse model through promotion of neurogenesis via the Raf/ERK1/2 pathway.
Pakdeepak, Kanet; Chokchaisiri, Ratchanaporn; Govitrapong, Piyarat; Tocharus, Chainarong; Suksamrarn, Apichart; Tocharus, Jiraporn.
Afiliación
  • Pakdeepak K; Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
  • Chokchaisiri R; Graduate School, Chiang Mai University, Chiang Mai, Thailand.
  • Govitrapong P; Department of Chemistry, School of Science, University of Phayao, Muang Phayao, Thailand.
  • Tocharus C; Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.
  • Suksamrarn A; Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
  • Tocharus J; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand.
Phytother Res ; 35(5): 2536-2544, 2021 May.
Article en En | MEDLINE | ID: mdl-33319436
Adult neurogenesis plays an important role in improving cognitive functions. Neurogenesis generates new neurons, a process mediated by neural stem cell proliferation, migration, and differentiation. Long-term exposure to high levels of glucocorticoid results in the suppression of neurogenesis pathways and leads to the onset of cognitive impairment. The induction of neurogenesis by a potent bioactive compound is considered the most promising treatment for neurodegenerative disorders. 5,6,7,4'-Tetramethoxyflavanone (TMF) is a flavonoid compound isolated from Chromolaena odorata (L.) R. M. King & H. Rob. Previous study showed that TMF improved cognitive impairment by attenuating Aß production and pTau expression, thereby increased cell survival and promoted synaptic plasticity. The aim of this study was to investigate the effect of TMF on dexamethasone (DEX)-suppressed neurogenesis in mice. Mice received DEX for 28 days before being treated with TMF for additional 30 days. Mice were randomly divided into four groups: control, TMF, DEX, and DEX + TMF. TMF promoted neurogenesis by increasing BrdU-positive cells, Prox1, doublecortin, and Nestin expression. TMF also upregulated the expression of Raf and extracellular-signal-regulated kinase (ERK)1/2, which are pivotal for neurogenesis signaling. In conclusion, TMF promoted neurogenesis-related protein expression in the proliferation, differentiation, and maturation phases via Raf/ERK1/2 signaling pathway.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Phytother Res Año: 2021 Tipo del documento: Article País de afiliación: Tailandia

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Phytother Res Año: 2021 Tipo del documento: Article País de afiliación: Tailandia