Your browser doesn't support javascript.
loading
FABP7 Facilitates Uptake of Docosahexaenoic Acid in Glioblastoma Neural Stem-like Cells.
Choi, Won-Shik; Xu, Xia; Goruk, Susan; Wang, Yixiong; Patel, Samir; Chow, Michael; Field, Catherine J; Godbout, Roseline.
Afiliación
  • Choi WS; Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
  • Xu X; Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
  • Goruk S; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada.
  • Wang Y; Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
  • Patel S; Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
  • Chow M; Department of Surgery, University of Alberta, Edmonton, AB T6G 2B7, Canada.
  • Field CJ; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada.
  • Godbout R; Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
Nutrients ; 13(8)2021 Jul 30.
Article en En | MEDLINE | ID: mdl-34444824
ABSTRACT
Glioblastoma (GBM) is an aggressive tumor with a dismal prognosis. Neural stem-like cells contribute to GBM's poor prognosis by driving drug resistance and maintaining cellular heterogeneity. GBM neural stem-like cells express high levels of brain fatty acid-binding protein (FABP7), which binds to polyunsaturated fatty acids (PUFAs) ω-6 arachidonic acid (AA) and ω-3 docosahexaenoic acid (DHA). Similar to brain, GBM tissue is enriched in AA and DHA. However, DHA levels are considerably lower in GBM tissue compared to adult brain. Therefore, it is possible that increasing DHA content in GBM, particularly in neural stem-like cells, might have therapeutic value. Here, we examine the fatty acid composition of patient-derived GBM neural stem-like cells grown as neurosphere cultures. We also investigate the effect of AA and DHA treatment on the fatty acid profiles of GBM neural stem-like cells with or without FABP7 knockdown. We show that DHA treatment increases DHA levels and the DHAAA ratio in GBM neural stem-like cells, with FABP7 facilitating the DHA uptake. We also found that an increased uptake of DHA inhibits the migration of GBM neural stem-like cells. Our results suggest that increasing DHA content in the GBM microenvironment may reduce the migration/infiltration of FABP7-expressing neural stem-like cancer cells.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Neoplasias Encefálicas / Ácidos Docosahexaenoicos / Glioblastoma / Proteínas Supresoras de Tumor / Proteína de Unión a los Ácidos Grasos 7 Tipo de estudio: Prognostic_studies Idioma: En Revista: Nutrients Año: 2021 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Neoplasias Encefálicas / Ácidos Docosahexaenoicos / Glioblastoma / Proteínas Supresoras de Tumor / Proteína de Unión a los Ácidos Grasos 7 Tipo de estudio: Prognostic_studies Idioma: En Revista: Nutrients Año: 2021 Tipo del documento: Article País de afiliación: Canadá