Your browser doesn't support javascript.
loading
One-pot biofabrication and characterization of Tara gum/Riceberry phenolics-silver nanogel: A cytocompatible and green nanoplatform with multifaceted biological applications.
Eze, Fredrick Nwude; Ovatlarnporn, Chitchamai; Jayeoye, Titilope John; Nalinbenjapun, Sirinporn; Sripetthong, Sasikarn.
Afiliación
  • Eze FN; Drug Delivery System Excellence Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand. Electronic address: fredrick.e@psu.ac.th.
  • Ovatlarnporn C; Drug Delivery System Excellence Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla
  • Jayeoye TJ; Department of Chemistry, Faculty of Physical Sciences, Alex-Ekwueme Federal University, Ndufu-Alike (AE-FUNAI), P.M.B. 1010, Abakaliki, Ebonyi State, Nigeria.
  • Nalinbenjapun S; Drug Delivery System Excellence Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla
  • Sripetthong S; Drug Delivery System Excellence Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla
Int J Biol Macromol ; 206: 521-533, 2022 May 01.
Article en En | MEDLINE | ID: mdl-35231534
ABSTRACT
This work proposed a one-pot green route for the development of a biocompatible Tara gum-Riceberry phenolics­silver nanosphere hybrid nanocomposite (TG/RiPE-SNG) with manifold biological potentialities. The reaction system comprised of AgNO3 as nanosilver precursor, Riceberry phenolic extract as the green in situ reductant, and Tara gum as stabilizing and anchoring agent. TG/RiPE-SNG was extensively characterized using UV-vis spectroscopy, FTIR, RAMAN, TEM, FESEM, EDX, DLS/zeta potential, XRD, and TGA analyses. Small, stable, spherical, well-dispersed SNP with an average particle size of 13.01 nm and λmax of 421 nm were synthesized in situ, and uniformly distributed within the gel-like TG/RiPE composite. The prepared nanocomposite demonstrated superior antibacterial properties (MIC of 12.5 µg/mL) against S. aureus and S. epidermidis compared to the gum or extract. Additionally, TG/RiPE-SNG exhibited strong light barrier, tyrosinase inhibitory and antioxidant functionalities. TG/RiPE-SNG also exhibited high stability at different pH and was more thermally stable relative to the plain TG/RiPE composite. Furthermore, TG/RiPE-SNG showed good biocompatibility towards mouse L929 fibroblasts and rat erythrocytes. The obtained findings revealed a simple, benign, and inexpensive approach using only natural ingredients for the preparation of gum-based biopolymer-nanosilver hybrid nanocomposite and underscored the strong attributes of TG/RiPE-SNP as a nanomaterial with desirable biomedical potentials.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Plata / Nanopartículas del Metal Idioma: En Revista: Int J Biol Macromol Año: 2022 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Plata / Nanopartículas del Metal Idioma: En Revista: Int J Biol Macromol Año: 2022 Tipo del documento: Article