Your browser doesn't support javascript.
loading
Two high hierarchical regulators, PuMYB40 and PuWRKY75, control the low phosphorus driven adventitious root formation in Populus ussuriensis.
Wang, Hanzeng; Pak, Solme; Yang, Jia; Wu, Ye; Li, Wenlong; Feng, He; Yang, Jingli; Wei, Hairong; Li, Chenghao.
Afiliación
  • Wang H; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
  • Pak S; College of Agriculture, Jilin Agricultural Science and Technology University, Jilin, China.
  • Yang J; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
  • Wu Y; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
  • Li W; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
  • Feng H; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
  • Yang J; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
  • Wei H; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
  • Li C; College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA.
Plant Biotechnol J ; 20(8): 1561-1577, 2022 08.
Article en En | MEDLINE | ID: mdl-35514032
Adventitious rooting is an essential biological process in the vegetative propagation of economically important horticultural and forest tree species. It enables utilization of the elite genotypes in breeding programmes and production. Promotion of adventitious root (AR) formation has been associated with starvation of inorganic phosphate and some factors involved in low phosphorus (LP) signalling. However, the regulatory mechanism underlying LP-mediated AR formation remains largely elusive. We established an efficient experimental system that guaranteed AR formation through short-term LP treatment in Populus ussuriensis. We then generated a time-course RNA-seq data set to recognize key regulatory genes and regulatory cascades positively regulating AR formation through data analysis and gene network construction, which were followed by experimental validation and characterization. We constructed a multilayered hierarchical gene regulatory network, from which PuMYB40, a typical R2R3-type MYB transcription factor (TF), and its interactive partner, PuWRKY75, as well as their direct targets, PuLRP1 and PuERF003, were identified to function upstream of the known adventitious rooting genes. These regulatory genes were functionally characterized and proved their roles in promoting AR formation in P. ussuriensis. In conclusion, our study unveiled a new hierarchical regulatory network that promoted AR formation in P. ussuriensis, which was activated by short-term LP stimulus and primarily governed by PuMYB40 and PuWRKY75.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Populus Tipo de estudio: Prognostic_studies Idioma: En Revista: Plant Biotechnol J Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Populus Tipo de estudio: Prognostic_studies Idioma: En Revista: Plant Biotechnol J Año: 2022 Tipo del documento: Article País de afiliación: China