Your browser doesn't support javascript.
loading
Identification of molecular mechanisms underlying the therapeutic effects of Xintong granule in coronary artery disease by a network pharmacology and molecular docking approach.
Huang, Zhihong; Guo, Siyu; Fu, Changgeng; Zhou, Wei; Stalin, Antony; Zhang, Jingyuan; Liu, Xinkui; Jia, Shanshan; Wu, Chao; Lu, Shan; Li, Bingbing; Wu, Zhishan; Tan, Yingying; Fan, Xiaotian; Cheng, Guoliang; Mou, Yanfang; Wu, Jiarui.
Afiliación
  • Huang Z; Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
  • Guo S; Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
  • Fu C; Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
  • Zhou W; China-Japan Friendship Hospital, Beijing, China.
  • Stalin A; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
  • Zhang J; Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
  • Liu X; Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
  • Jia S; Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
  • Wu C; Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
  • Lu S; Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
  • Li B; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
  • Wu Z; Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
  • Tan Y; Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
  • Fan X; Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
  • Cheng G; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Shandong Lunan Pharmaceutical Group Co. Ltd., Linyi, China.
  • Mou Y; College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
  • Wu J; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Shandong Lunan Pharmaceutical Group Co. Ltd., Linyi, China.
Medicine (Baltimore) ; 101(27): e29829, 2022 Jul 08.
Article en En | MEDLINE | ID: mdl-35801781
Coronary artery disease (CAD) is a cardiovascular disease characterized by atherosclerosis, angiogenesis, thrombogenesis, inflammation, etc. Xintong granule (XTG) is considered a practical therapeutic strategy in China for CAD. Although its therapeutic role in CAD has been reported, the molecular mechanisms of XTG in CAD have not yet been explored. A network pharmacology approach including drug-likeness (DL) evaluation, oral bioavailability (OB) prediction, protein-protein interaction (PPI) network construction and analysis, and Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses was used to predict the active ingredients, potential targets, and molecular mechanisms of XTG associated with the treatment of CAD. Molecular docking analysis was performed to investigate the interactions between the active compounds and the underlying targets. Fifty-one active ingredients of XTG and 294 CAD-related targets were screened for analysis. Gene Ontology enrichment analysis showed that the therapeutic targets of XTG in CAD are mainly involved in blood circulation and vascular regulation. KEGG pathway analysis indicated that XTG intervenes in CAD mainly through the regulation of fluid shear stress and atherosclerosis, the AGE-RAGE signaling pathway in diabetic complications, and the relaxin signaling pathway. Molecular docking analysis showed that each key active ingredient (quercetin, luteolin, kaempferol, stigmasterol, resveratrol, fisetin, gamma-sitosterol, and beta-sitosterol) of XTG can bind to the core targets of CAD (AKT1, JUN, RELA, MAPK8, NFKB1, EDN1, and NOS3). The present study revealed the CAD treatment-related active ingredients, underlying targets, and potential molecular mechanisms of XTG acting by regulating fluid shear stress and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, and relaxin signaling pathway.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Medicinas Tradicionales: Medicinas_tradicionales_de_asia / Medicina_china Métodos Terapéuticos y Terapias MTCI: Terapias_biologicas Asunto principal: Relaxina / Enfermedad de la Arteria Coronaria / Medicamentos Herbarios Chinos / Aterosclerosis Tipo de estudio: Diagnostic_studies Idioma: En Revista: Medicine (Baltimore) Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Medicinas Tradicionales: Medicinas_tradicionales_de_asia / Medicina_china Métodos Terapéuticos y Terapias MTCI: Terapias_biologicas Asunto principal: Relaxina / Enfermedad de la Arteria Coronaria / Medicamentos Herbarios Chinos / Aterosclerosis Tipo de estudio: Diagnostic_studies Idioma: En Revista: Medicine (Baltimore) Año: 2022 Tipo del documento: Article País de afiliación: China