Your browser doesn't support javascript.
loading
Genome-Wide Identification and Analysis of the Growth-Regulating Factor Family in Zanthoxylum armatum DC and Functional Analysis of ZaGRF6 in Leaf Size and Longevity Regulation.
Huang, Yanhui; Chen, Jiajia; Li, Jianrong; Li, Yan; Zeng, Xiaofang.
Afiliación
  • Huang Y; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China.
  • Chen J; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China.
  • Li J; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China.
  • Li Y; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China.
  • Zeng X; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China.
Int J Mol Sci ; 23(16)2022 Aug 12.
Article en En | MEDLINE | ID: mdl-36012309
ABSTRACT
Growth-regulating factors (GRFs) are plant-specific transcription factors that play an important role in plant growth and development. In this study, fifteen GRF gene members containing QLQ and WRC domains were identified in Zanthoxylum armatum. Phylogenetic and collinearity analysis showed that ZaGRFs were closely related to CsGRFs and AtGRFs, and distantly related to OsGRFs. There are a large number of cis-acting elements related to hormone response and stress induction in the GRF gene promoter region of Z. armatum. Tissue-specific expression analysis showed that except for ZaGRF7, all the ZaGRFs were highly expressed in young parts with active growth and development, including terminal buds, seeds, and young flowers, suggesting their key roles in Z. armatum growth and development. Eight ZaGRFs were selected to investigate the transcriptional response to auxin, gibberellin and drought treatments. A total of six ZaGRFs in the NAA treatment, four ZaGRFs in the GA3 treatment, and six ZaGRFs in the PEG treatment were induced and significantly up-regulated. Overexpression of ZaGRF6 increased branching and chlorophyll content and delayed senescence of transgenic Nicotiana benthamiana. ZaGRF6 increased the expression of CRF2 and suppressed the expression of ARR4 and CKX1, indicating that ZaGRF6 is involved in cytokinin metabolism and signal transduction. These research results lay a foundation for further analysis of the GRF gene function of Z. armatum and provide candidate genes for growth, development, and stress resistance breeding of Z. armatum.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Zanthoxylum Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Int J Mol Sci Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Zanthoxylum Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Int J Mol Sci Año: 2022 Tipo del documento: Article País de afiliación: China