Your browser doesn't support javascript.
loading
[Epidural photobiomodulation accelerates the drainage of brain interstitial fluid and its mechanism].
Cai, Y; Wan, Q Q; Cai, X J; Gao, Y J; Han, H B.
Afiliación
  • Cai Y; Department of Radiology, Peking University Third Hospital, Beijing 100191, China.
  • Wan QQ; Peking University School of Nursing, Beijing 100191, China.
  • Cai XJ; Peking University School of Nursing, Beijing 100191, China.
  • Gao YJ; Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China.
  • Han HB; Beijing Key Lab of Magnetic Resonance Imaging Device and Technique, Beijing 100191, China.
Beijing Da Xue Xue Bao Yi Xue Ban ; 54(5): 1000-1005, 2022 Oct 18.
Article en Zh | MEDLINE | ID: mdl-36241244
ABSTRACT

OBJECTIVE:

To evaluate the effect of photobiomodulation (PBM) on the drainage of brain interstitial fluid (ISF) and to investigate the possible mechanism of the positive effect of PBM on Alzheimer's disease (AD).

METHODS:

Twenty-four SD male rats were randomly divided into PBM group (n=12), sham PBM group (n=6), and negative control group (n=6). According to the injection site of tracer, the PBM group was further divided into PBM-ipsilateral traced group (n=6) and PBM-contralateral traced group (n=6). Rats in the PBM group and the sham PBM group were exposed to the dura minimally invasively on the skull corresponding to the frontal cortical area reached by ISF drainage from caudate nucleus region. The PBM group was irradiated by using 630 nm red light (5-6 mW/cm2), following an irradiation of 5 min with a 2 min pause, and a total of 5 times; the sham PBM group was kept in the same position for the same time using the light without power. The negative control group was kept without any measure. After PBM, tracer was injected into caudate nucleus of each group. The changes of ISF drainage in caudate nucleus were observed according to the diffusion and distribution of tracer molecule by tracer-based magnetic resonance imaging, and the structural changes of brain extracellular space (ECS) were analyzed by diffusion rate in ECS-mapping (DECS-mapping) technique. Finally, parameters reflecting the structure of brain ECS and the drainage of ISF were obtained volume fraction (α), tortuo-sity (λ), half-life (T1/2), and DECS. The differences of parameters among different groups were compared to analyze the effect of PBM on brain ECS and ISF. One-Way ANOVA post hoc tests and independent sample t test were used for statistical analysis.

RESULTS:

The parameters including T1/2, DECS, and λ were significantly different among the PBM-ipsilateral traced group, the PBM-contralateral traced group, and the sham PBM group (F=79.286, P < 0.001; F=13.458, P < 0.001; F=10.948, P=0.001), while there was no difference in the parameter α of brain ECS among the three groups (F=1.217, P=0.324). Compared with the sham PBM group and the PBM-contralateral traced group, the PBM-ipsilateral traced group had a significant decrease in the parameter T1/2 [(45.45±6.76) min vs. (76.01±3.44) min, P < 0.001; (45.45±6.76) min vs. (78.07±4.27) min, P < 0.001], representing a significant acceleration of ISF drainage; the PBM-ipsilateral traced group had a significant increase in the parameter DECS [(4.51±0.77)×10-4 mm2/s vs. (3.15±0.44)×10-4 mm2/s, P < 0.001; (4.51±0.77)×10-4 mm2/s vs. (3.01±0.38)×10-4 mm2/s, P < 0.001], representing a significantly increased molecular diffusion rate of in the brain ECS; the PBM-ipsilateral traced group had a significant decrease in the parameter λ (1.51±0.21 vs. 1.85±0.12, P=0.001; 1.51±0.21 vs. 1.89±0.11, P=0.001), representing a significant decrease in the degree of tortuosity in the brain ECS.

CONCLUSION:

PBM can regulate the brain ISF drainage actively, which may be one of the potential mechanisms of the effect of PBM therapy on AD. This study provides a new method for enhancing the brain function via ECS pathway.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Métodos Terapéuticos y Terapias MTCI: Terapias_energeticas Asunto principal: Terapia por Luz de Baja Intensidad / Enfermedad de Alzheimer Idioma: Zh Revista: Beijing Da Xue Xue Bao Yi Xue Ban Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Métodos Terapéuticos y Terapias MTCI: Terapias_energeticas Asunto principal: Terapia por Luz de Baja Intensidad / Enfermedad de Alzheimer Idioma: Zh Revista: Beijing Da Xue Xue Bao Yi Xue Ban Año: 2022 Tipo del documento: Article País de afiliación: China