Design of programmable post-translational switch control platform for on-demand protein secretion in mammalian cells.
Nucleic Acids Res
; 51(1): e1, 2023 01 11.
Article
en En
| MEDLINE
| ID: mdl-36268868
The development of novel strategies to program cellular behaviors is a central goal in synthetic biology, and post-translational control mediated by engineered protein circuits is a particularly attractive approach to achieve rapid protein secretion on demand. We have developed a programmable protease-mediated post-translational switch (POSH) control platform composed of a chimeric protein unit that consists of a protein of interest fused via a transmembrane domain to a cleavable ER-retention signal, together with two cytosolic inducer-sensitive split protease components. The protease components combine in the presence of the specific inducer to generate active protease, which cleaves the ER-retention signal, releasing the transmembrane-domain-linked protein for trafficking to the trans-Golgi region. A furin site placed downstream of the protein ensures cleavage and subsequent secretion of the desired protein. We show that stimuli ranging from plant-derived, clinically compatible chemicals to remotely controllable inducers such as light and electrostimulation can program protein secretion in various POSH-engineered designer mammalian cells. As proof-of-concept, an all-in-one POSH control plasmid encoding insulin and abscisic acid-activatable split protease units was hydrodynamically transfected into the liver of type-1 diabetic mice. Induction with abscisic acid attenuated glycemic excursions in glucose-tolerance tests. Increased blood levels of insulin were maintained for 12 days.
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Péptido Hidrolasas
/
Procesamiento Proteico-Postraduccional
/
Biología Sintética
Idioma:
En
Revista:
Nucleic Acids Res
Año:
2023
Tipo del documento:
Article
País de afiliación:
Suiza